Hydrogeological Assessment - 3358 Lakefield Road & Seaforth Crescent, Lakefield, Ontario

April 5, 2022

Prepared for: Triple T Holdings

Cambium Reference: 11598-001

CAMBIUM INC.

866.217.7900

cambium-inc.com

Peterborough | Barrie | Oshawa | Kingston | Calgary

Executive Summary

Cambium Inc. (Cambium) was retained by Triple T Holdings (Client) to complete a hydrogeological assessment in support of creating 4 new residential building lots located at 3358 Lakefield Road and Seaforth Crescent on the outskirts of Lakefield, Ontario. The hydrogeological assessment included an assessment of surficial soils, installation and hydraulic testing of three test wells, and nitrate attenuation calculations.

Pumping test results indicate that there are adequate groundwater resources available on the Site to support the proposed development and that water withdrawal associated with the development will not negatively influence surrounding groundwater users.

Water quality testing identified parameter concentrations which exceed the Ontario Drinking Water Quality Standards: hardness, sodium, total coliforms, and total dissolved solids (all wells); and chloride and turbidity (Test Well 1 and Test Well 3). These parameters can be readily treated with a residential water treatment system that includes water softening, filtering, and disinfection.

It is noted that it is the duty of Triple T Holdings to notify prospective buyers that sodium is present in the groundwater in the area at concentrations greater than 20 mg/L, which would affect individuals on sodium reduced diets, and that this notification should be added to the title deeds for each property where an exceedance was identified.

The nitrate attenuation calculations indicate that the Site could sustain up to 4 dwellings while maintaining a boundary concentration of nitrate at less than 10 mg/L. Therefore, the proposed development of 4 dwellings is within acceptable criteria.

Respectfully submitted,

Cambium Inc.

Kevin Warner, M.Sc., P.Geo. (Ltd) Manager – Water & Wastewater

P:\11500 to 11599\11598-001 Triple T Holdings - HydroG - 3358 Lakefield Rd\Deliverables\REPORT - Hydrogeo\Final\2022-04-05 RPT Hydrogeological Assessment, Lakefield - Final.docx

Table of Contents

1.0	Introduction	1
1.1	Site Description	1
2.0	Methodology	2
2.1	Background Information	2
2.2	Test-Pit Investigation	2
2.3	Test Well Installation	3
2.4	Hydraulic Pumping Tests	4
2.5	Test Well #1	4
2.6	Test Well #2	4
2.7	Test Well #3	5
2.8	Groundwater Quality Analysis	6
3.0	Geological and Hydrogeological Setting	7
3.1	Test-Pit Investigation	7
3.2	Water Well Records	8
3.3	Hydrogeological Conditions	9
4.0	Water Supply Assessment	10
4.1	Hydraulic Testing of Test Wells	
4.1.1	Test Well 1	10
4.1.2	Test Well 2	11
4.1.3	Test Well 3	12
4.1.4	Assessment of Interference Effects	13
4.2	Water Quality	14
5.0	Wastewater Assessment	16
5.1	Available Dilution	16
5.2	Predictive Assessment	17
5.3	Conclusions	19

6.0	Summary	20
7.0	References	22
8.0	Standard Limitations	23

List of Embedded Tables

Table 1	Pumping Rates at Test Well 3	6
Table 2	Summary of Grain Size Distribution Analysis Results	8
Table 3	Water Well Information Summary	8
Table 4	Fracture Depths	9
Table 5	ODWQS Exceedances	14
Table 6	Available Dilution Calculations	17
Table 7	Predictive Assessment of Nitrate Concentration	19

List of Appended Figures

- Figure 1 Regional Location Plan
- Figure 2 Site Plan
- Figure 3 Surrounding Water Well Records
- Figure 4 Water Levels: Pumping Test 1
- Figure 5 Water Levels: Pumping Test 2
- Figure 6 Water Levels: Pumping Test 3

List of Appendices

- Appendix A Proposed Development Plan
- Appendix B Test Pit Logs and Grain Size Distribution Analyses
- Appendix C Test Well Records
- Appendix D Water Quality Analysis and Certificates of Analysis
- Appendix E Water Well Records
- Appendix F Water Budget Calculations

1.0 Introduction

Cambium Inc. (Cambium) was retained by Triple T Holdings (Client) to complete a hydrogeological assessment in support of creating 4 new residential building lots located at Lakefield Road and Seaforth Crescent on the outskirts of Lakefield, Ontario.

There are no municipal services for water or wastewater near the property; therefore, the Site will require to be serviced on-site. As such, a hydrogeological assessment was undertaken for potable water supply and wastewater, in accordance with Ministry of the Environment, Conservation and Parks (MECP) Guidelines D-5-5 and D-5-4, respectively.

The hydrogeological assessment included the installation and hydraulic testing of three (3) test wells to characterize on-site groundwater resources, determine the impact of water withdrawal on surrounding groundwater users, and asses the potability of the supply aquifer. The assessment also included a characterization of the native soils on the property and evaluation of suitability for an on-site wastewater treatment system.

1.1 Site Description

At present, the Site exists as vacant land. Most of the Site is heavily vegetated with trees, shrubs and grasses. The Site is comprised of three parcels (northern, central, southern), with a combined area of 21,186 m². The northern parcel is bound to the north and south by residential properties, to the east by Rays Creek, and to the west by Seaforth Crescent. The central parcel is located at the end of Seaforth Crescent and is bound to the north and south by undeveloped property, to the east by undeveloped property and Rays Creek, and to the west by residential properties. The southern parcel is bound to the north by a residential property, to the south and east by undeveloped property and Rays Creek, and to the west by Lakefield Road. It is proposed that the Site be developed and severed into four residential properties which will be serviced by a private water supply well and an on-site wastewater system.

The regional location of the Site is outlined on Figure 1. A Site plan is outlined on Figure 2. The proposed development plan is included in Appendix A.

2.0 Methodology

This section describes the methodology undertaken to complete the hydrogeological assessment.

2.1 Background Information

A thorough review of the available relevant background information was undertaken for this study, which included the following:

- Ministry Water Well Information System (WWIS) website (MECP, 2022);
- Physiography of Southern Ontario (Chapman, L.J. and D.F. Putnam, 1984);
- Surficial geology of Southern Ontario, Miscellaneous Release Data 128 revised, scale 1:50,000 (Ontario Geological Survey, 2010); and
- Paleozoic Geology of Southern Ontario, Miscellaneous Release Data 219, scale 1:50,000 (Armstrong, D.K. and Dodge, J.E.P., 2007).

2.2 Test-Pit Investigation

On December 15, 2020, a test-pit investigation was completed by Cambium to determine the shallow subsurface conditions across the property. The test-pits were excavated using a tracked excavator or auger under the supervision of a Cambium technologist. A total of four test-pits, designated as TP101-20 through TP104-20, were advanced throughout the Site, with one test pit completed on each proposed lot. Each soil sample was handled only by the technologist using dedicated nitrile gloves. Soil samples were logged for soil colour, texture, structure, moisture content, and consistency/compactness. Open test-pits were backfilled with the excavated soils and compacted with the backhoe bucket. The test-pit logs are provided in Appendix B. Test-pit locations are identified on Figure 2.

Physical laboratory testing (particle size distribution analyses and moisture content testing) was also completed on three (3) selected soil samples (SS-21-0058, -0059, and -0060) to confirm textural classification identified during field logging. Analysis results are based on the

Unified Soil Classification System (USCS) scale. Copies of laboratory analysis reports for these samples are provided in Appendix B.

2.3 Test Well Installation

Three test wells were installed by Herb Lang Well Drilling Ltd. between September 17 - 27, 2021. Information from the Client indicates the proposed development will be less than 15 ha in size. As such, based on Section 4.2 of Procedure D-5-5 Technical Guideline for Private Wells: Water Supply Assessment (Ministry of the Environment, 1996b), three test wells were required at the Site. All drilled wells were characterized as clay overburden, with thicknesses ranging from 8.5 m to 9.8 m, overlying limestone bedrock. Total depths of wells ranged from 18.3 m below ground surface (mbgs) to 20.7 mbgs. The specific details of each individual well are given below.

Supply well A319332 (hereafter referred to as Test Well 1) was installed on September 23, 2021, on the central parcel of the Site. Overburden within the drilled well was characterized as clay with stones. Bedrock, starting at 9.1 mbgs, was characterized as limestone. Water bearing fractures were encountered within the limestone at 14.6 mbgs and 18.3 mbgs. The total well depth drilled was 19.8 m.

Supply well A319324 (hereafter referred to as Test Well 3) was installed on September 17, 2021, on the southern parcel of the Site. Overburden within the drilled well was characterized as clay with boulders. Bedrock, starting at 8.5 mbgs, was characterized as limestone. Water bearing fractures were encountered within the limestone at 9.8 m below ground surface (mbgs) and 18.3 mbgs. The total well depth drilled was 18.3 m.

Supply well A319334 (hereafter referred to as Test Well 2) was installed on September 27, 2021, on the northern parcel of the Site. Overburden within the drilled well was characterized as clay. Bedrock, starting at 9.8 mbgs, was characterized as limestone. A water bearing fracture was encountered within the limestone at 20.7 mbgs. The total well depth drilled was 21.3 m.

The on-site well records are included in Appendix D.

2.4 Hydraulic Pumping Tests

2.5 Test Well #1

On October 25, 2021, Cambium staff completed a pumping test at Test Well 1. Cambium installed a disinfected submersible pump in the well at a depth of approximately 15 mbgs. A pressure transducer level logger (logger) was installed in Test Well 1, and monitoring wells Test Well 2 and Test Well 3, to measure water level. Water level was also measured manually in a residential well (1268 Seaforth Crescent) for a portion of the test. Barometric pressure was measured by a separate logger and used for atmospheric compensation. The discharge outlet for the pump was placed to minimize potential groundwater recharge during the test.

According to the water well record for Test Well 1, the recommended yield of the well at the time of installation was 4.5 gpm, which is equivalent to 17.0 L/min.

At 11:40 the pumping test was commenced for Test Well 1 for a duration of 6 hours. The flow rate was set at approximately 14 L/min (3.1 igpm) for the duration of the constant–rate pumping test.

Water levels were monitored with manual equipment in Test Well 1 until 18:43 on October 25, 2021. The pump was removed from Test Well 1 at 18:45. The loggers installed in Test Well 1, 2, and 3 were left in place to monitor water levels until the following day. In total, 5,200 L of water was withdrawn from Test Well 1 during Pumping Test 1.

2.6 Test Well #2

On October 26, 2021, Cambium staff completed a pumping test at Test Well 2. Cambium installed a disinfected submersible pump in the well at a depth of approximately 16 mbgs. A pressure transducer level logger (logger) was installed in Test Well 2, and monitoring wells Test Well 1 and Test Well 3, to measure water level. Barometric pressure was measured by a separate logger and used for atmospheric compensation. The discharge outlet for the pump was placed to minimize potential groundwater recharge during the test.

According to the water well record for Test Well 2, the recommended yield of the well at the time of installation was 6 gpm, which is equivalent to 22.7 L/min.

At 10:08 the pumping test was commenced for Test Well 2 for a duration of 6 hours. The flow rate was set at approximately 12 L/min (2.6 igpm) for the duration of the constant–rate pumping test.

Water levels were monitored with manual equipment in Test Well 2 until 17:23 on October 26, 2021. The loggers installed in Test Well 1, 2, and 3 were left in place to monitor water levels until the following day. In total, 4,300 L of water was withdrawn from Test Well 2 during Pumping Test 2.

2.7 Test Well #3

On October 27, 2021, Cambium staff completed a pumping test at Test Well 3. Cambium removed the submersible pump from Test Well 2, disinfected it, and installed it into Test Well 3 at a depth of approximately 16 mbgs. A pressure transducer level logger (logger) was installed in Test Well 3, and monitoring wells Test Well 1 and Test Well 2, to measure water level. Barometric pressure was measured by a separate logger and used for atmospheric compensation. The discharge outlet for the pump was placed to minimize potential groundwater recharge during the test.

According to the water well record for Test Well 3, the recommended yield of the well at the time of installation was 7 gpm, which is equivalent to 26.5 L/min.

At 10:05 the pumping test was commenced for Test Well 3 for a duration of 6 hours. The pumping rate was initially set at 20 L/min (4.4 igpm), however due to significant increases in drawdown, the pumping rate was altered two times (reduced to 14 L/min and then increased to 18 L/min). Details regarding the pumping rates and durations employed during the test are provided in Table 1. In total, approximately 6,400 L of water was withdrawn from Test Well 3 during Pumping Test 3.

Step	Start Time	Stop Time	Flowrate (L/min)	Total Drawdown at End of Step (m)	Volume Pumped in Step (L)
1	10:05	10:15	20	4.43	200
2	10:15	10:26	14	3.16	154
3	10:26	16:05	18	5.50	6,102
				Total	6,456

Table 1 Pumping Rates at Test Well 3

Water levels were monitored with manual equipment until 17:17 on October 27, 2021. The logger installed in Test Well 3 was left in place to monitor water levels until 17:25 on October 27, 2021. The loggers installed in Test Well 1 and Test Well 2 were left in place until 19:00 On October 27, 2021.

2.8 Groundwater Quality Analysis

Groundwater quality samples were collected from Test Well 1, 2, and 3 during each pumping test, during the last 30 minutes of each test. Test Wells 1, 2, and 3 were additionally resampled on January 27, 2022, February 9, 2002, and February 18, 2022, respectively, to analyze for turbidity and bacteria exceedances. Prior to resampling, each well was shock chlorinated and a disinfected pump was installed at the bottom of the well. Water was recirculated within the well for 25-50 minutes and then pumped at a high rate (approximately 20 L) for 50-142 minutes. The high pumping rate was employed to clear accumulated sediment in the well and encourage well development. After the well development period, the pump was moved to a middle depth in the well, within the well casing, and a lower pumping rate (approximately 14 L/min) was sustained for 2.5-4.5 hours. After this time period, a water sample was collected from the well.

Collected samples were submitted to SGS Canada Inc. in Lakefield (SGS) for analysis of general organic and inorganic chemistry. SGS is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). Samples were stored at a temperature between 0 °C and 10 °C prior and during transport. The certificates of analysis have been included in Appendix E.

3.0 Geological and Hydrogeological Setting

The Site is located within the physiographic region known as the Peterborough Drumlin Field, which is characterized as a rolling till plain with densely distributed drumlins. Drumlins are composed of highly calcareous till. Eskers comprised of sand and gravel are also present in the area. (Chapman, L.J. and D.F. Putnam, 1984).

According to Miscellaneous Release – Data 128 from the Ontario Geological Survey (Ontario Geological Survey, 2010), the Site is within an area where the following surficial deposits are present:

- Coarse textured glaciolacustrine deposits: sand, gravel, minor silt and clay.
- Till: stone-poor, sandy silt to silty sand.

According to Miscellaneous Release – Data 219 from the Ontario Geological Survey (Armstrong, D.K. and Dodge, J.E.P., 2007), the bedrock in the area of the Site consists of Middle Ordovician Simcoe Group rocks in the Verulam Formation. The Verulam Formation is described as thin-bedded, interbedded limestone, shaly limestone, and shale (Ontario Geological Survey, 1989). It is highly fossiliferous and may disintegrate easily (Chapman, L.J. and D.F. Putnam, 1984).

3.1 Test-Pit Investigation

The soils encountered during the test-pit investigation corroborate the surficial mapping described above. All four test-pits exhibited similar stratigraphy. Topsoil was present from surface to depths ranging from 0.41 to 0.91 mbgs. Underlying the topsoil was greyish-brown to brown silty sand or sand. In TP101-20 silty sand was underlain by moist greyish blue clayey silt from 2.13 to 2.48 mbgs. Water seepage was observed in this test pit at 1.30 mbgs. In TP104-20 silt and sand was underlain by sand, some silt, beginning at 1.19 mgbs. The completed depths of the test-pits ranged between 1.47 mbgs to 2.49 mbgs. Water was not observed in any test-pit except for TP101-20.

Bedrock was not encountered during test-pit investigation at the Site.

Results from the three samples submitted for laboratory grain size distribution analysis corroborate soil properties that were identified in the field. Soils range from silty sand to silt and sand, with variable amounts of clay and gravel. A summary of analysis results is presented in Table 2. Detailed laboratory analysis reports are provided in Appendix B.

Depth (mbgs)			Gravel %	Sand %	Silt %	Clay %	Moisture Content %
0.9 – 2.1	TP101-20 GS1	Silty Sand some Gravel trace Clay	16	48	30	6	8.7
0.6 – 2.2	TP103-20 GS1	Silt and Sand some Gravel some Clay	15	37	36	12	7.1
0.4 – 1.2	TP104-20 GS1	Silt and Sand trace Clay	0	38	58	4	12.9

Table 2 Summary of Grain Size Distribution Analysis Results

3.2 Water Well Records

According to the Ministry of Environment, Conservation and Parks (MECP) Water Well Information System (WWIS), there are 68 water well records located within approximately 500 m of the Site. Of these records, 44 describe the installation of drilled bedrock wells. The remainder are wells installed into overburden materials. All but one well is reported to be used for water supply. The wells records located within 500 m of the Site are depicted on Figure 3. A summary of water well information, including total depth, static water level, and recommended flow rate, are included below in Table 3. Further details are provided in Appendix C.

Table 3 Water Well Information Summary

		Depth (mbgs)	Static Water Level (mbgs)	Flow Rate (igpm)
Bedrock Wells	Min	3.7	1	4
Count = 44	Max	28.1	11	56
	Average ⁽¹⁾	20.1	6	21

1. The geometric mean of the recommended flow rate was calculated

The records indicate that all drilled bedrock water wells are installed in fractured limestone. Overburden wells are installed in either gravel or clay. Bedrock wells varied in depth from 6.7 mbgs to 38.7 mbgs and were on average 20.1 mbgs deep. The static water levels varied from 1 mbgs to 11 mbgs. The average static water level was 6 mbgs. The flow rates varied

from 5 to 68 gpm; the geometric mean was 25.5 gpm. The water bearing fractures were encountered between the depths of 8 and 24 mbgs. Higher recommended flow rates occurred for deeper fracture depths. The number of fractures encountered during the installation of bedrock wells, at various depth ranges, are summarized below in Table 4.

Table 4 Fracture Depths

Fracture Depth Ranges (mbgs)	Number of Fractures Encountered
0 - 10	8
10 - 20	28
20 - 30	8

3.3 Hydrogeological Conditions

The overburden at the Site consists of silty sand to sand and silt, with varying amounts of clay, based on excavated test pits extending to depths ranging between 1.5 mbgs and 2.5 mbgs. Water well record information suggests that two aquifers are present within the area surrounding the Site: an upper confined aquifer within gravel and clay overburden, and a lower confined aquifer within fractured limestone bedrock. Groundwater resources in the area of the Site are sourced from both aquifer types. Local groundwater flow within the upper aquifer is inferred to follow surficial topography towards Ray Creek in an easterly-southeasterly direction. The direction of groundwater flow within the lower limestone aquifer is unknown at this time; detailed groundwater elevation measurements would be required to verify groundwater flow directions and was not included in this scope of work.

4.0 Water Supply Assessment

Hydraulic testing and water quality sampling was completed to assess the suitability of test wells to provide a sufficient yield of potable water.

4.1 Hydraulic Testing of Test Wells

A total of three pumping tests, one for each test well, was completed at the Site between October 25 and October 27, 2021.

4.1.1 Test Well 1

The static water level in Test Well 1 was 2.26 mbgs on October 25, 2021, prior to the commencement of the pumping test. The pump was installed at a depth of approximately 15 mbgs. The available drawdown in the well was therefore approximately 12.7 m (height of static water level above pump). The maximum drawdown reported at the end of the test was 4.78 m, which equates to a water level of 7.04 mbgs. The remaining available drawdown at the end of the pumping test was approximately 7.9 m (which is 48% of the available drawdown at the start of the test).

The hydraulic testing commenced at 11:40 on October 25, 2021, and ran continuously for 6 hours. The discharge rate during the pumping test remained constant at 14 L/min for the duration of the test. The pumping test concluded at 17:40.

The total drawdown at the end of the pumping test was 4.78 m. Equilibrium conditions were not achieved during the pumping test. The water level in the Test Well recovered to 95% of static conditions within 140 minutes. A graphical representation of Test Well 1 water level response is outlined on Figure 4.

An influence on monitoring wells TW2 and the homeowner well at 1268 Seaforth Crescent was observed during the pumping test at TW1 (Figure 4). The total drawdown measured in TW2 at the end of the test was 0.69 m. The magnitude of drawdown in the homeowner well at 1268 Seaforth Crescent due to pumping at TW1 is not known as the static water level in the well

prior to test commencement in TW1 is not available. No drawdown due to TW1 pumping was observed in TW3.

A total of approximately 5,200 L was pumped from the well during the pumping test. Water levels in the well recovered to 95% of pre-test static water levels within 140 minutes. These results indicate that Test Well 1 can provide sufficient yield to satisfy the daily demand for a residence (2,000 L/day for a four-bedroom home based on Part 8 of the Ontario Building Code).

4.1.2 Test Well 2

The static water level in Test Well 2 was 1.95 mbgs on October 25, 2021, prior to the commencement of the pumping test. The pump was installed at a depth of approximately 16 mbgs. The available drawdown in the well was therefore approximately 14.0 m (height of static water level above pump). The maximum drawdown reported at the end of the test was 3.47 m, which equates to a water level of 5.42 mbgs. The remaining available drawdown at the end of the pumping test was approximately 10.5 m (which is 75% of the available drawdown at the start of the test).

The hydraulic testing commenced at 10:08 on October 26, 2021, and ran continuously for 6 hours. The discharge rate during the pumping test remained constant at 12 L/min for the duration of the test. The pumping test concluded at 16:09.

The total drawdown at the end of the pumping test was 3.47 m. Equilibrium conditions were not achieved during the pumping test. The water level in the Test Well recovered to 95% of static conditions within 208 minutes. A graphical representation of Test Well 2 water level response is outlined on Figure 4.

An influence on monitoring well TW1 was observed during the pumping test at TW2 (Figure 5). The total drawdown measured in TW2 at the end of the test was 0.36 m. No drawdown due to TW2 pumping was observed in TW3.

A total of approximately 4,300 L was pumped from the well during the pumping test. Water levels in the well recovered to 95% of pre-test static water levels within 208 minutes. These

results indicate that Test Well 2 can provide sufficient yield to satisfy the daily demand for a residence (2,000 L/day for a four-bedroom home based on Part 8 of the Ontario Building Code).

4.1.3 Test Well 3

The static water level in Test Well 3 was 0.24 mbgs on October 27, 2021, prior to the commencement of the pumping test. The pump was installed at a depth of approximately 16 mbgs. The available drawdown in the well was therefore approximately 15.7 m (height of static water level above pump). The maximum drawdown reported at the end of the test was 5.23 m, which equates to a water level of 5.47 mbgs. The remaining available drawdown at the end of the pumping test was approximately 10.4 m (which is 66% of the available drawdown at the start of the test).

The hydraulic testing commenced at 10:04 on October 27, 2021, and ran continuously for 6 hours. The discharge rate varied in during the first 20 minutes of the pumping test (from 20 L/min to 14L/min); after this time the discharge rate remained constant at 18L/min for the duration of the test. The pumping test concluded at 16:04.

The total drawdown at the end of the pumping test was 5.23 m. Equilibrium conditions were close to be being achieved during the pumping test. The water level in the Test Well recovered to 95% of static conditions within 33 minutes. A graphical representation of Test Well 3 water level response is outlined on Figure 4.

No drawdown due to TW3 pumping was observed monitoring wells TW1 or TW2 (Figure 6). It is possible that drawdown due to TW3 pumping occurred in the homeowner well at 3224 Lakefield Rd, however the variations in water levels measured in this well suggest the well was used by the homeowner during the test so the magnitude of potential drawdown due to TW3 pumping is not known.

A total of approximately 6,400 L was pumped from the well during the pumping test. Water levels in the well recovered to 95% of pre-test static water levels within 33 minutes. These results indicate that Test Well 2 can provide sufficient yield to satisfy the daily demand for a

residence (2,000 L/day for a four-bedroom home based on Part 8 of the Ontario Building Code).

4.1.4 Assessment of Interference Effects

TW1 and TW2 pumping test results indicate that there are fracture connections between TW1, TW2, and the homeowner well at 1268 Seaforth Crescent. Interference effects (drawdown due to pumping in TW1 and TW2) were observed in these wells. Interference effects on TW1 due to pumping in other wells are also evident during the pumping test at TW1. This is illustrated in Figure 4, where background noise (variable water levels) of a cyclical nature is visible within the plotted water level record.

The minimal amount of drawdown (< 1m) observed in monitoring wells and the rapid recovery of water levels in TW1, TW2, and TW3 after each well was pumped indicates that fractures within the aquifer are well connected and that the aquifer can provide high water yields. This is further demonstrated by the lack of observed interference effects in monitoring wells due to pumping in TW3. This well recovered to 95% of pretest static water levels within 33 minutes; it is interpreted that the fractures within this well have very high transmissivity and that the sustainable pumping level for this well is likely greater than the average 18 L/min pumped during the test at this well.

Based on this data, the interference effects on nearby wells due to pumping in TW1, TW2, and TW3 are expected to be minimal. The volumes of water removed during the pumping tests (4,300 to 6,400 L) are two to three times greater than the typical amount of water used by a residential dwelling according to Part 8 of the Ontario Building Code (i.e. a 4 bedroom house is estimated to use 2,000 L/day). The maximum water level drawdowns achieved during pumping tests were 25%-52% of total drawdown available. As such, the interference effects that may occur due to residential pumping at the Site are expected to be much less than those observed during the pumping tests. Additionally, due to the anticipated on/off pump cycles that will be employed in these wells, the interference impacts on surrounding water users are expected to be negligible in the long run.

4.2 Water Quality

Groundwater samples were collected from test wells during the last 30 minutes of their respective pumping tests. A second round of samples were also collected from each well at later dates; in these cases, sampling occurred after extended well development and pumping that lasted 4 hours to 6.5 hours. These samples were submitted to SGS Canada Inc. in Lakefield (SGS) for analysis of general organic and inorganic chemistry.

The water quality results were compared against the Ontario Drinking Water Quality Standards (ODWQS) (Ministry of the Environment, 2006). Those parameters reported at concentrations in excess of ODWQS criteria have been outlined in Table 5.

	Test Well 1		Test Well 2 Test		Test \	st Well 3	
Parameter	25-Oct	27-Jan	26-Oct	09-Feb	27-Oct	18-Feb	ODWQS
Farameter	2021	2022	2021	2022	2021	2022	Criteria
Chloride (mg/L)	220	260	210.0	210	260	300	250
Hardness (mg/L)	387	477	366	407	337	391	80-100
Sodium (mg/L)	55.0	64.0	55.5	53.0	115	133	20 (200)
Total Dissolved	634	663	431	583	674	811	500
Solids (mg/L)							
Total Coliform (cfu/100mL)	100	320	5	4	3	1	1
Turbidity (NTU)	37.10	8.31	2.32	2.05	34.60	15.70 (4.35)	5

Table 5 ODWQS Exceedances

1. Bold entries indicate exceedances of ODWQS criteria.

Hardness, sodium, total coliforms, and total dissolved solids (TDS) exceeded the ODWQS criteria in samples from all Test Wells. Chloride and turbidity concentrations exceeded ODWQS criteria in Test Wells 1 and 3. All other analyzed parameters were within acceptable ranges.

Hardness is a parameter which is typically elevated in limestone bedrock aquifers. This parameter can be treated with residential water softening units.

Sodium is also a parameter which is typically elevated in limestone aquifers. Measured concentrations of sodium are elevated above the limit which serves as a warning to individuals on sodium restricted diets (20 mg/L). The concentration of sodium is less than the aesthetic

limit however (200 mg/L), which indicates that the water is still potable at the measured concentrations.

It would be Triple T Holdings duty notify purchasers that sodium may be present in the groundwater in the area at concentrations greater than 20 mg/L which would affect individuals on sodium reduced diets and that this notification should be added to the title deeds for each applicable property.

Elevated TDS concentrations are a result of high hardness and sodium; mitigation measures discussed above will also address this parameter as well.

The source of total coliforms that are present in the water quality samples is unknown at this time. Resampling occurred at all three Test Wells to rule out potential sources of error (i.e. inadequate disinfection of the well after installation or contamination of sample during collection). Local aquifer contamination from septic system systems is ruled out as a cause for elevated total coliforms due to the lack of measurable E.coli in any of the samples. It is inferred that other sources of background concentrations exist within the aquifer; possibly from surficial connections to the aquifer system. Elevated total coliforms can be effectively treated with a residential water disinfection system (i.e. UV treatment or chlorination).

The source of elevated chloride concentrations in TW1 and TW3 are also unknown at this time. It is noted that concentrations of this parameter were greater in the winter months, compared to the fall, which suggests that there may be surficial connections between fractures in the bedrock aquifer and sources of road salt.

Turbidity concentrations decreased in Test Well 1 and Test Well 3 during the second sampling event after extended well development occurred. Turbidity was also measured in the field during well development and values of this parameter were observed to decreased as well development progressed. It is expected that further reduction in turbidity will occur with continuing pumping from the wells. Additionally, a field filtered water sample from Test Well 3 reduced turbidity values to below ODWQS criteria (field filtering reduced the sample turbidity to 4.35 NTU). This demonstrates that this parameter will be able to be treated adequately with a residential treatment system which includes filtration.

5.0 Wastewater Assessment

As per Procedure D-5-4 Technical Guideline for Individual On-Site Sewage Systems: Water Quality Risk Assessment (Ministry of the Environment, 1996a), an assessment was completed to determine the feasibility of utilizing on-site sewage disposal for the development.

The creation of 4 new residential lots will increase wastewater effluent loading on the overburden soils in the area and subsequently the shallow overburden aquifer that is present regionally. Within the effluent, nitrate is considered the limiting contaminant due to human health concerns. Procedure D-5-4 requires that the effluent plume at the Site boundary be within the ODWQS limit of 10 mg/L for nitrate to prevent contamination of adjacent properties. Although natural processes and soil interaction can result in nitrate being attenuated in the receiving aquifer system, Procedure D-5-4 states that only dilution can be used as the principal attenuation mechanism to predict future nitrate concentrations. As such, a mass balance calculation is used to determine the impact of developing residential lots on the Site.

5.1 Available Dilution

The total available dilution for the Site is estimated by the following equation:

Where:

Qi - Volume of Available dilution water

A – Area of the Site

S – Water surplus

I – Infiltration factor

To calculate the water surplus the thirty-year climate normal data collected between 1981 and 2010 at the Peterborough (Trent U) weather station was used. The data was accessed through the Environment Canada website (Environment Canada, 2020). The total yearly precipitation, on average, was 882 mm.

The Thornthwaite method was used to determine the amount of evapotranspiration that will occur at the Site (S. Lawrence Dingman, 2008). The calculated depth of evapotranspiration was 542 mm/year. The evapotranspiration calculations are attached in Appendix F. Therefore, the water surplus calculated to be 340 mm per year (0.932 mm/day).

To determine the fraction of surplus water that infiltrates into the soils on-site, the volume of surplus water is multiplied by an infiltration factor. The infiltration factor varies between 0 and 1 and is estimated based on topography, soils and cover (as per the Stormwater Management Planning and Design Manual, (Ministry of the Environment, 2006).

In addition to calculating the infiltration factor for the Site, the area of the Site was measured (via available mapping) to determine the total volume of available dilution water generated in each portion of the Site. The calculations of available dilution water for each portion of the Site have been outlined below in Table 6.

Infiltration Factor	
Topography	Rolling = 0.2
Soil	Till (silty sand) = 0.25
Cover	Grass/Shrub/Forested = 0.2
Infiltration Factor (I)	0.65
Volume of Precipitation Wa	iter
Developable Portion Area (A) (m ²)	21,186
Surplus (S) (m/day)	0.000932
Volume of Surplus Water Per Day (AxS)	19.7 m³/day (19,745 L/day)
Volume of Available Dilution Water Per Day ((AxS)xI)	12.8 m³/day (12,834 L/day)
Volume of Runoff Water Per Day ((AxS)x(1-I))	6.9 m³/day (6,911 L/day)

Table 6 Available Dilution Calculations

5.2 Predictive Assessment

The creation of the new residential lots will increase wastewater effluent loading on the shallow receiving aquifer system in the overburden. To assess the effect of the new septic systems, the concentration of nitrate added to the receiving aquifer from the proposed lots is calculated from the input of nitrate to be contributed by each on-site wastewater system and the volume of surplus water (determined by water balance calculations) which will infiltrate on the Site.

Based on Procedure D-5-4, each proposed lot is anticipated to generate an average discharge of 1,000 L/day of sewage effluent. Total nitrogen (all species) ultimately convert to nitrate through the wastewater treatment process. Nitrate is considered to be the critical contaminant in sewage effluent. A nitrate loading of 40 grams/lot/day is required to be normally used to determine the effluent loading from conventional septic systems on the receiving groundwater system.

Surplus water which infiltrates into the soils on-site will also provide groundwater recharge. As nitrate is not present in atmospheric precipitation, a value of 0.1 mg/L is used in the calculation for the concentration of nitrate in the surplus volume.

To determine the adequate lot density for the Site, a mass balance calculation is used to determine the sewage loading for nitrate on the property boundary. The mass balance calculations is outlined below as:

$$Q_tC_t = Q_eC_e + Q_iC_i$$

Where:

Qt =	Total volume (Q _e + Q _i)	
------	---	--

- Ct = Total concentration of nitrate at the property boundary
- Qe = Volume of septic effluent
- C_e = Concentration of nitrate in effluent (40 mg/L)
- Q_i = Volume of available dilution water
- C_i = Concentration of nitrate in infiltration water (0.1 mg/L)

In order to determine the concentration of nitrate at the property boundary (Ct), the above mass balance equation is arranged as follows:

$$C_t = \frac{Q_e C_e + Q_i C_i}{Q_t}$$

This equation was used for the developable portion of the Site. The results of the equation have been outlined in Table 7 below:

Variable	Value
Number of Lots in Portion	4
Volume of Sewage Effluent (Qe)	Lots x 1,000 L/day = 4,000 L/day
Ce	40 mg/L
Qi	12,834 L/day
Сі	0.1 mg/L
Qt	16,834 L/day
Ct	9.7 mg/L

Table 7 Predictive Assessment of Nitrate Concentration

The number of lots included in the equation was maximized, while still maintaining a nitrate concentration at the border of the developable area of the Site of less than 10 mg/L. The maximum number of lots that can theoretically be developed on the Site is 4. If 4 lots are to be developed on the Site, the concentration of nitrate at the Site boundary would be 9.7 mg/L. It should be noted that the down-gradient boundary of each of the proposed lots is Rays Creek to the east. Thus, there are no water users down-gradient of the Site as the proposed and existing residential development to the east of Rays Creek is serviced by Municipal water supply.

5.3 Conclusions

The wastewater assessment considers the construction of 4 residential dwellings. The nitrate loading calculations indicate that the concentration of nitrate at the boundary of the developable area will be 9.7 mg/L if 4 dwellings are constructed. Therefore, there is enough land area to accommodate the 4 lots according to Guideline D-5-4.

6.0 Summary

Cambium was retained by Triple T Holdings to complete a hydrogeological assessment in support of creating 4 new residential building lots located at Lakefield Road and Seaforth Crescent on the outskirts of Lakefield, Ontario. Three water wells were installed as per Guideline D-5-5. All three wells were installed into the underlying limestone bedrock formation and are sourced by water bearing fractures within the bedrock. The well yield was sufficient in all three wells to supply peak usage requirements for domestic purposes.

During each pumping test, water levels were monitored in the other on-site test wells and available nearby homeowner wells. Drawdown was observed in observation wells during pumping tests at Test Well 1 and Test Well 2. The magnitude of drawdown was minimal however (<1 m), and the large amounts of available drawdown remaining at the end of the tests, as well as rapid water level recovery times, indicate there are ample yields of water available in the aquifer. It is not expected that there will be negative impacts to surrounding well users due to pumping at the Site.

Water quality testing identified parameter concentrations which exceed the Ontario Drinking Water Quality Standards: hardness, sodium, total coliforms, and total dissolved solids (all wells); and chloride and turbidity (Test Well 1 and Test Well 3). Most parameters can be readily treated with a residential water treatment system that includes water softening, filtering, and disinfection.

It is noted that it is the duty of Triple T Holdings to notify prospective buyers that sodium is present in the groundwater in the area at concentrations greater than 20 mg/L, which would affect individuals on sodium reduced diets and that this notification should be added to the title deeds for each property where an exceedance was identified.

The wastewater assessment considers the construction of 4 residential dwellings. The nitrate loading calculations indicate that the concentration of nitrate at the boundary of the developable area will be 9.7 mg/L; therefore, there is enough land area to accommodate the 4 lots according to Guideline D-5-4.

Cambium concludes that the Site can sustain the development of 4 new residential lots without inducing a negative impact on the quality or quantity of on-site and off-site groundwater resources.

7.0 References

- Armstrong, D.K. and Dodge, J.E.P. (2007). *Paleozoic Geology of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release Data 219.
- Chapman, L.J. and D.F. Putnam. (1984). *The Physiography of Southern Ontario: Ontario Geological Survey, Special Volume 2.*
- Environment Canada. (2020, 09 22). *Canadian Climate Normals* 1981-2010 Station Data. Retrieved 02 04, 2017, from http://climate.weather.gc.ca/index_e.html
- MECP. (2022, February). Retrieved from Ministry of the Environment, Conservation, and Parks Water Well Information System: (https://www.ontario.ca/environment-and-energy/mapwell-records)
- Ministry of the Environment. (1996a). *Procedure D-5-4, Technical Guideline For Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment.*
- Ministry of the Environment. (1996b). *Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment.*
- Ministry of the Environment. (2006). *Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.*
- Ontario Geological Survey. (1989). *Limestone Industries of Ontario. Vol 3.* Ontario Ministry of Natural Resources; Ministry of Northern Development and Mines.
- Ontario Geological Survey. (2010). *Surficial geology of Southern Ontario.* Ontario Geological Survey, Miscellaneous Release Data 128 Revised.
- S. Lawrence Dingman. (2008). Physical Hydrology, Second Edition.

8.0 Standard Limitations

Limited Warranty

In performing work on behalf of a client, Cambium relies on its client to provide instructions on the scope of its retainer and, on that basis, Cambium determines the precise nature of the work to be performed. Cambium undertakes all work in accordance with applicable accepted industry practices and standards. Unless required under local laws, other than as expressly stated herein, no other warranties or conditions, either expressed or implied, are made regarding the services, work or reports provided.

Reliance on Materials and Information

The findings and results presented in reports prepared by Cambium are based on the materials and information provided by the client to Cambium and on the facts, conditions and circumstances encountered by Cambium during the performance of the work requested by the client. In formulating its findings and results into a report, Cambium assumes that the information and materials provided by the client or obtained by Cambium from the client or otherwise are factual, accurate and represent a true depiction of the circumstances that exist. Cambium relies on its client to inform Cambium if there are changes to any such information and materials. Cambium does not review, analyze or attempt to verify the accuracy or completeness of the information or materials provided, or circumstances encountered, other than in accordance with applicable accepted industry practice. Cambium will not be responsible for matters arising from incomplete, incorrect or misleading information or from facts or circumstances that are not fully disclosed to or that are concealed from Cambium during the provision of services, work or reports.

Facts, conditions, information and circumstances may vary with time and locations and Cambium's work is based on a review of such matters as they existed at the particular time and location indicated in its reports. No assurance is made by Cambium that the facts, conditions, information, circumstances or any underlying assumptions made by Cambium in connection with the work performed will not change after the work is completed and a report is submitted. If any such changes occur or additional information is obtained, Cambium should be advised and requested to consider if the changes or additional information affect its findings or results.

When preparing reports, Cambium considers applicable legislation, regulations, governmental guidelines and policies to the extent they are within its knowledge, but Cambium is not qualified to advise with respect to legal matters. The presentation of information regarding applicable legislation, regulations, governmental guidelines and policies is for information only and is not intended to and should not be interpreted as constituting a legal opinion concerning the work completed or conditions outlined in a report. All legal matters should be reviewed and considered by an appropriately qualified legal practitioner.

Site Assessments

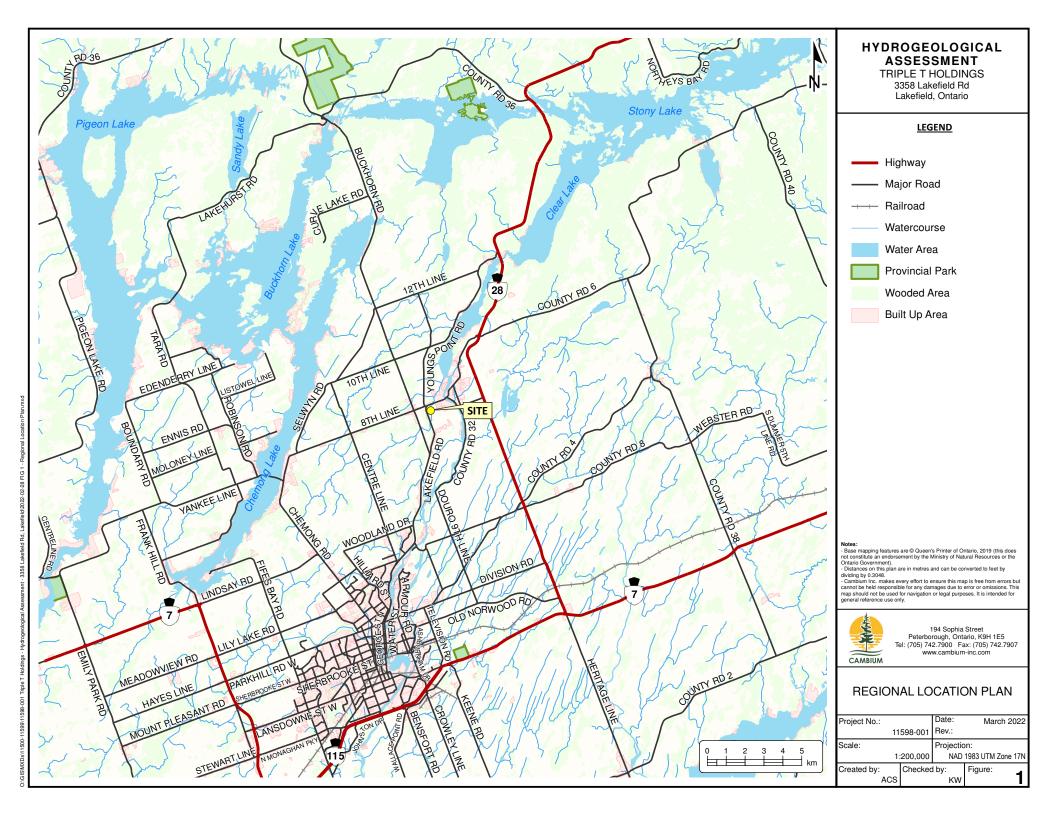
A site assessment is created using data and information collected during the investigation of a site and based on conditions encountered at the time and particular locations at which fieldwork is conducted. The information, sample results and data collected represent the conditions only at the specific times at which and at those specific locations from which the information, samples and data were obtained and the information, sample results and data may vary at other locations and times. To the extent that Cambium's work or report considers any locations or times other than those from which information, sample results and data was specifically received, the work or report is based on a reasonable extrapolation from such information, sample results and data but the actual conditions encountered may vary from those extrapolations.

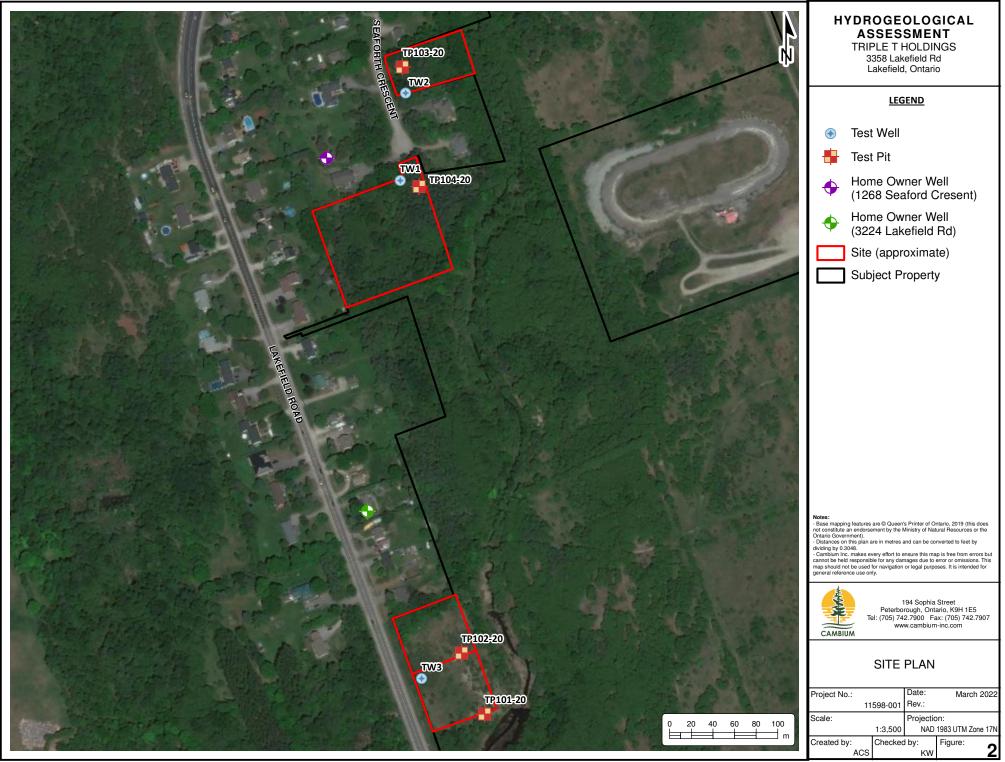
Only conditions at the site and locations chosen for study by the client are evaluated; no adjacent or other properties are evaluated unless specifically requested by the client. Any physical or other aspects of the site chosen for study by the client, or any other matter not specifically addressed in a report prepared by Cambium, are beyond the scope of the work performed by Cambium and such matters have not been investigated or addressed.

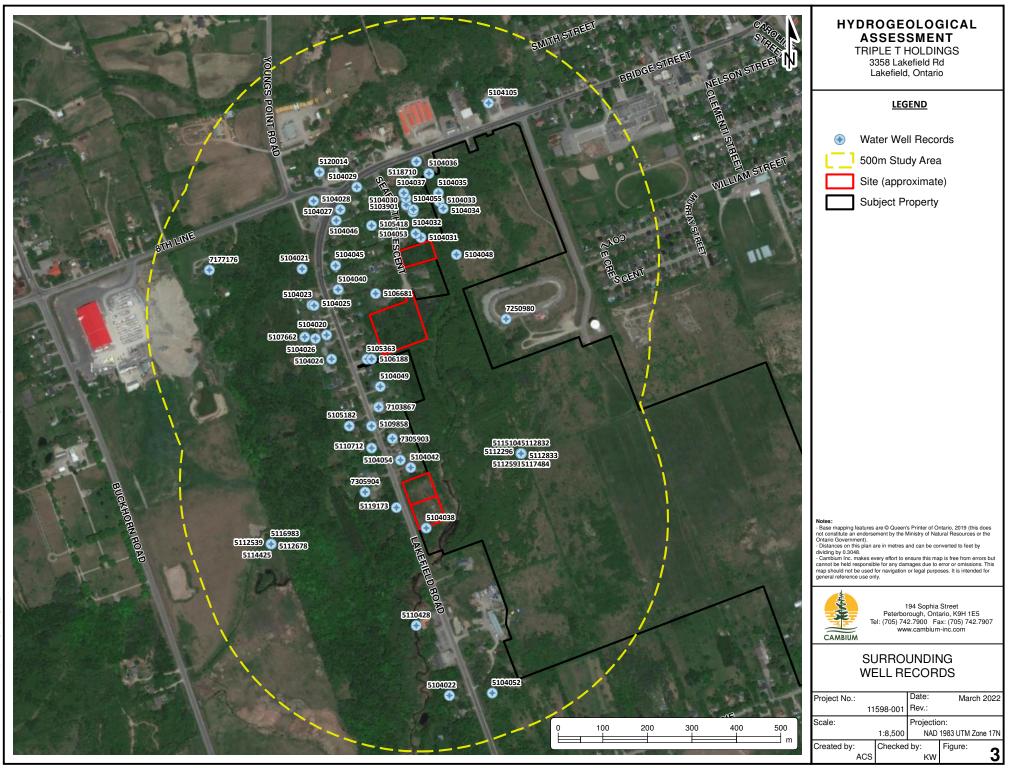
<u>Reliance</u>

Cambium's services, work and reports may be relied on by the client and its corporate directors and officers, employees, and professional advisors. Cambium is not responsible for the use of its work or reports by any other party, or for the reliance on, or for any decision which is made by any party using the services or work performed by or a report prepared by Cambium without Cambium's express written consent. Any party that relies on services or work performed by Cambium or a report prepared by Cambium without Cambium's express written consent, does so at its own risk. No report of Cambium may be disclosed or referred to in any public document without Cambium's express prior written consent. Cambium specifically disclaims any liability or responsibility to any such party for any loss, damage, expense, fine, penalty or other such thing which may arise or result from the use of any information, recommendation or other matter arising from the services, work or reports provided by Cambium.

Limitation of Liability


Potential liability to the client arising out of the report is limited to the amount of Cambium's professional liability insurance coverage. Cambium shall only be liable for direct damages to the extent caused by Cambium's negligence and/or breach of contract. Cambium shall not be liable for consequential damages.


Personal Liability


The client expressly agrees that Cambium employees shall have no personal liability to the client with respect to a claim, whether in contract, tort and/or other cause of action in law. Furthermore, the client agrees that it will bring no proceedings nor take any action in any court of law against Cambium employees in their personal capacity.

Appended Figures

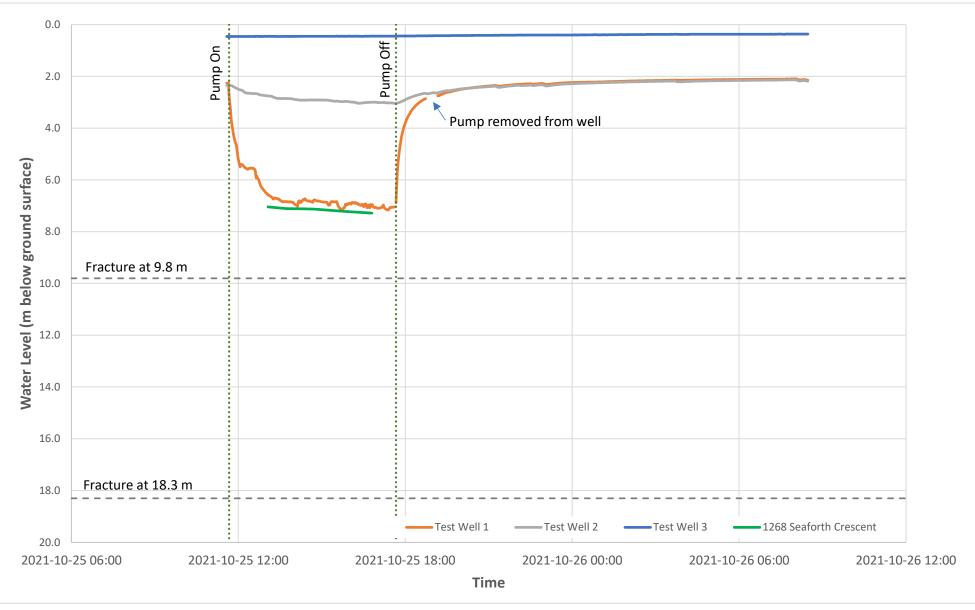


Figure 4: Pumping Test - Test Well 1

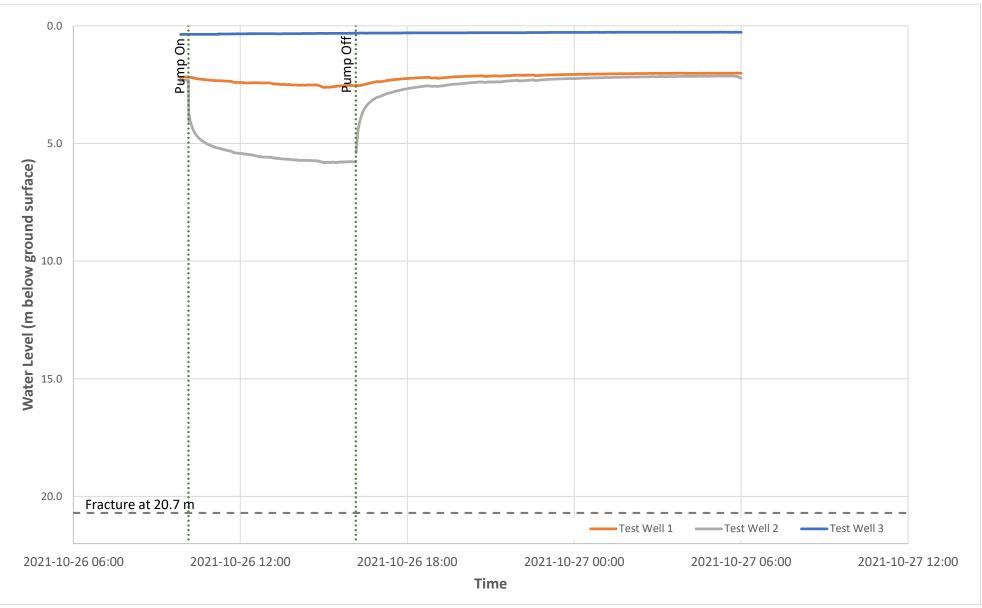


Figure 5: Pumping Test - Test Well 2

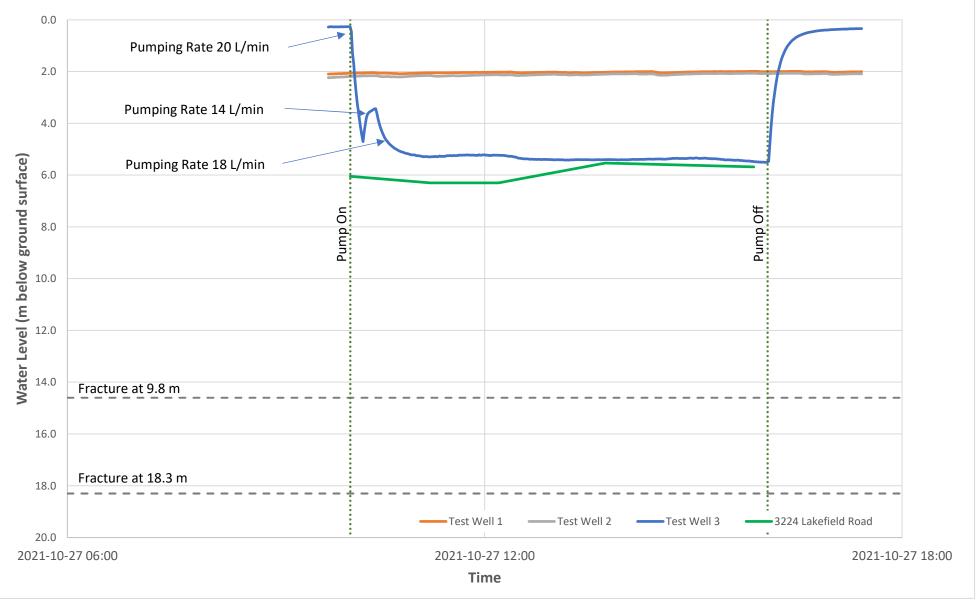
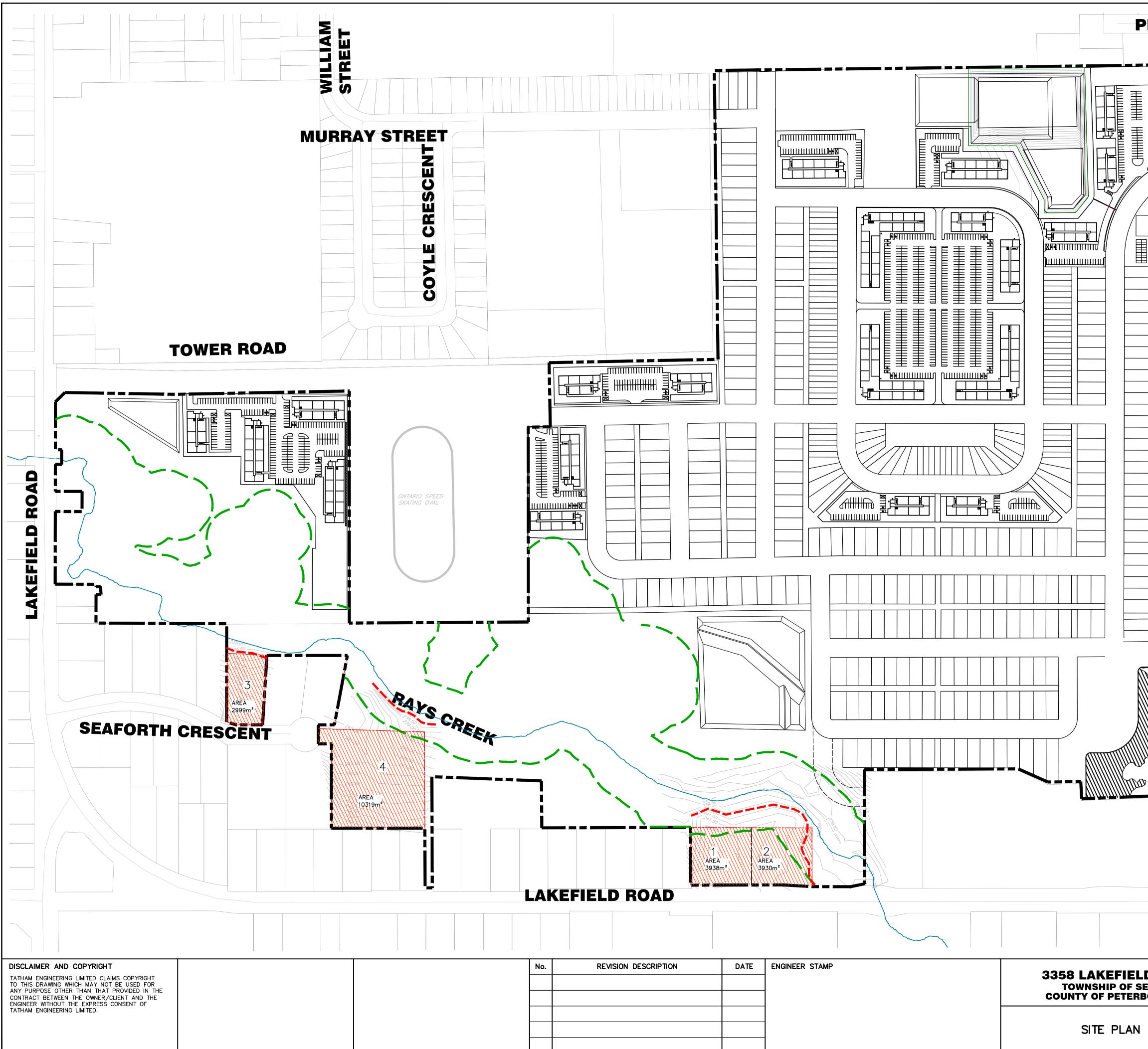



Figure 6: Pumping Test - Test Well 3

Appendix A Proposed Development Plan

			\bigcirc
EACOCK R			
<u> </u>			
3			
=			
1			
— i			
			1
		Ш 2	
		2	
Ø			
		LEGE	ND
	-		Y/DEVELOPMENT Y
		BOONDAR	I
	-	ENVIRONM	ENTAL CONSTRAINST
		BOUNDAR	1
	-	FLOOD LI	NE BOUNDARY
I			
	1		
			A A
D ROAD		ENGINEERI	$\Lambda\Lambda$
ELWYN			
BOROUGH		ENGINEERI	N G
	DESIGNA IN AUX		WG:
	DESIGN: JA/HY	FILE: 517651 D'	
	DRAWN: HY	DATE: JULY 2020	SP-1
	CHECK: JA	SCALE: 1:2000	

Appendix B Test Pit Logs and Grain Size Distribution Analyses

Project Name: Triple T Holdings - Hydro G - 3358 Lakefield Road - Test Pit Logs

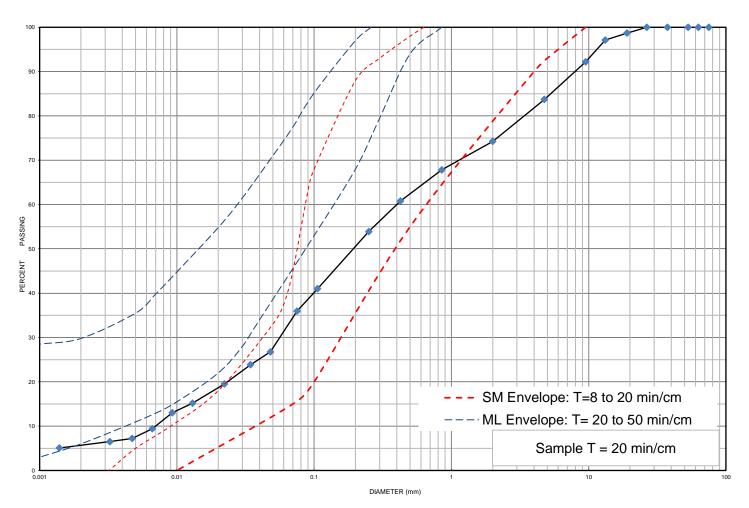
Cambium Reference No. 11598-001

Date: December 15, 2020 Staff: J. Munro

Test Pit ID	Depth (mbgs ¹)	Material Description	Sample
TP101-20	0 - 0.914 0.914 - 2.134 2.134 - 2.489 2.489	Topsoil/Organics Greyish-brown silty sand, some gravel, trace clay, trace cobble, loose, moist Greyish-blue, clayey silt, trace gravel, trace sand, trace cobble, moist Test pit completed at 2.489 mbgs with water seepage at 1.295mbgs and	GS1 GS2
TP102-20	0 - 0.813 0.813 - 2.286 2.286	Topsoil/Organics Greyish-brown silty sand, trace clay, cobbles, trace boulders, loose, dry Test pit completed at 2.286 mbgs -No bedrock or water table was encountered	GS1
TP103-20	0 - 0.635 0.635 - 2.235 2.235	Topsoil/Organics Greyish-brown sand and silt, some clay, some gravel, cobbles, trace boulders, loose dry Test pit completed at 2.235 mbgs -No bedrock or water table was encountered	GS1
TP104-20	0 - 0.406 0.406 - 1.194 1.194 - 1.4732 1.4732	Topsoil/Organics Brown silt and fine sand, trace clay, tree roots, lightly compacted, dry Grey fine sand, some silt, trace gravel, trace cobble, loose, dry Test pit terminated on large cobble/boulder - No bedrock or water table was encountered	GS1 GS2

¹ mbgs = metres below ground surface

Grain Size Distribution Chart


Project Number:	11598-001	Client:
Project Name:	3358 Lakefield Road - Hy	/drogeo Assessment
Sample Date:	December 15, 2020	Sampled By:
Location:	TP 101-20 GS 1	Depth:

Triple T Holdings

Joshua Munro - Cambium Inc.

Lab Sample No: S-21-0058

UNIFIED SOIL CLASSIFICATION SYSTEM						
	SAND (<4.	75 mm to 0.075 mm)		GRAVEL (>4.75 mm)		
CLAY & SILT (<0.075 mm)	FINE	MEDIUM	COARSE	FINE	COARSE	

	MIT SOIL CLASSIFICATION SYSTEM							
		FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY	SILT		SAND			GRAVEL		BOULDERS

Borehole No.	Sample No.		Depth	Gravel	Sand		Silt	(Clay	Moisture
TP 101-20	GS 1			16	48		30		6	8.7
	Description		Classification	D ₆₀	D ₃₀		D ₁₀		Cu	C _c
Silty Sand	d some Gravel trace Cl	ay	SM	0.400	0.056	6	0.007		57.14	1.12

Additional information availabe upon request

Date Issued:

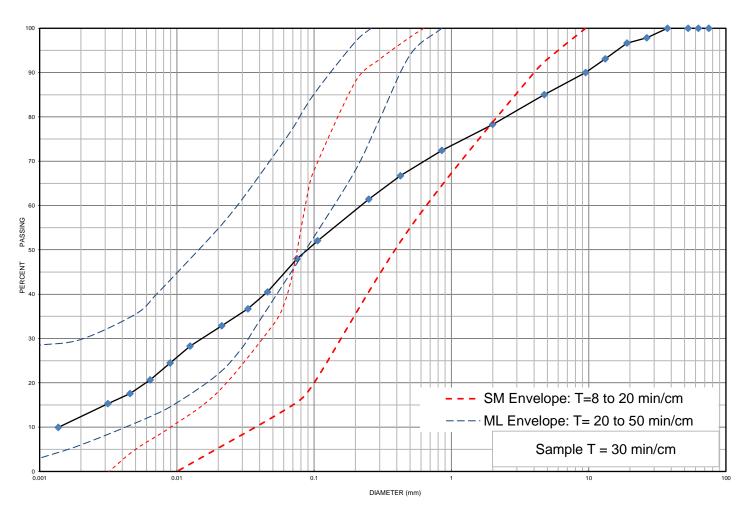
January 21, 2021

Issued By:

(Senior Project Manager)

Cambium Inc. (Laboratory) 866.217.7900 | cambium-inc.com

Grain Size Distribution Chart


Project Number:	11598-001	Client:
Project Name:	3358 Lakefield Road - Hy	drogeo Assessment
Sample Date:	December 15, 2020	Sampled By:
Location:	TP 103-20 GS 1	Depth:

Triple T Holdings

Joshua Munro - Cambium Inc.

Lab Sample No: S-21-0059

UNIFIED SOIL CLASSIFICATION SYSTEM						
	SAND (<4.	75 mm to 0.075 mm)		GRAVEL (>4.75 mm)		
CLAY & SILT (<0.075 mm)	FINE	MEDIUM	COARSE	FINE	COARSE	

MIT SOIL CLASSIFICATION SYSTEM								
		FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	00111 0500
CLAY	SILT		SAND			GRAVEL		BOULDERS

Borehole No.	Sample No.		Depth	Gravel	Sand		Silt		Clay	Moisture
TP 103-20	GS 1			15	37		36		12	7.1
	Description		Classification	D ₆₀	D ₃₀		D ₁₀		Cu	C _c
Sand and S	ilt some Gravel some	Clay	SM	0.0225	0.015	5	0.0015	;	15.00	7.12

Additional information availabe upon request

Date Issued:

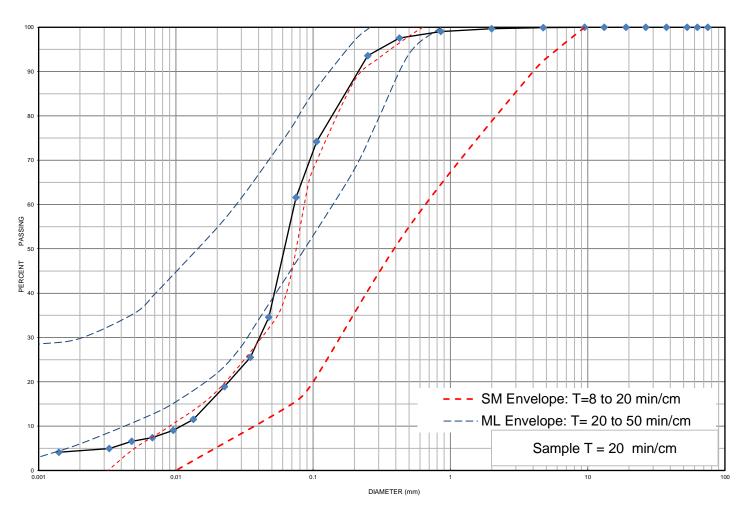
January 21, 2021

Issued By:

(Senior Project Manager)

Cambium Inc. (Laboratory) 866.217.7900 | cambium-inc.com

Grain Size Distribution Chart


Project Number:	11598-001	Client:
Project Name:	3358 Lakefield Road - Hydro	geo Assessment
Sample Date:	December 15, 2020	Sampled By:
Location:	TP 104-20 GS 1	Depth:

Triple T Holdings

Joshua Munro - Cambium Inc.

Lab Sample No: S-21-0060

UNIFIED SOIL CLASSIFICATION SYSTEM						
	SAND (<4.	75 mm to 0.075 mm)		GRAVEL (>4.75 mm)		
CLAY & SILT (<0.075 mm)	FINE	MEDIUM	COARSE	FINE	COARSE	

		MIT SOIL CL	ASSIFICATIO	N SYSTEM	_			
	CLAY SILT	FINE MEDIUM COARSE		FINE MEDIUM		COARSE	POULDERS	
CLAY		SAND			GRAVEL			BOULDERS

Borehole No.	Sample No.	Depth			Gravel	Gravel Sand		Silt		Clay		Moisture
TP 104-20	GS 1				0		38		58	4		12.9
	Description		Classification		D ₆₀		D ₃₀		D ₁₀		Cu	C _c
Silt a	and Sand trace Clay		ML		0.0730		0.041	0	0.0120	6	6.08	1.92

Additional information availabe upon request

Date Issued:

January 21, 2021

Issued By:

(Senior Project Manager)

Cambium Inc. (Laboratory) 866.217.7900 | cambium-inc.com 194 Sophia St.| Peterborough | ON | K9H 1E5

Appendix C Test Well Records

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

Well Tag Number						umber *					
								A 319332			
Туре *											
Constructio	on	A	bandonm	ent							
Measurement	reco	orded in	: *								
Metric		🖌 Ir	🖌 Imperial								
1. Well Owner's Information											
Last Name an	d Firs	t Name	, or Organ	ization is m	nandatory. *						
Last Name						First Na	ame				
Organization Triple T Holdings						Email Address					
Current Addr	ess										
Unit Number		Street 235	Number *	Street I Lakefie				City/Town/Village Lakefield			
Country Canada					Province Ontario			Postal Code K0L 2H0	Telephone Number		
2. Well Loc	atio	n									
Address of W	ell Lo	ocation									
Unit Number	Stre 0	eet Num		Street Nam Seaforth C				Township Smith			
Lot 26	-			Concessior 7	١		County/Dist	rict/Municipality ROUGH			
City/Town Lakefield						Province Ontario		Postal Code			
UTM Coordina	ates	Zone *	Easting *	Nc	orthing *			Municipal Plan and	I Sublot Number		
NAD 83		17	716142	4	921651	Test	UTM in Map				
Other	I							•			

3. Overburden and Bedrock Material *									
Well Depth *	60	(ft)							
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To				

				(ft)	(ft)
Black	Topsoil		Soft	0	1
Grey	Clay	Boulders	Packed	1	28
Grey	Limestone		Hard	28	60

4. Annular Space *									
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed						
(ft)	(ft)		(cubic feet)						
0	20	Bentonite chips (150 lbs)	150						
0	20	Bentonite slurry (24 gal)	24						

5. Method of Construction *										
Cable Tool	otary (Conventional)	Rotary (Reverse)	Boring Air per	cussion 🗌 Di	amond					
Jetting D	riving 🗌 Digging	Rotary (Air)	Augering Direct	Push						
Other (specify)										
6. Well Use *										
Public Industrial Cooling & Air Conditioning										
🗸 Domestic	Commercial	Not Used								
Livestock Municipal Monitoring										
Irrigation	Test Hole	Dewatering								
Other (specify)	Other (specify)									
7. Status of Well *										
✓ Water Supply	Replaceme	ent Well	Test Hole							
Recharge Well	Dewatering	Well	Observation and/or Mor	itoring Hole						
Alteration (Construction	tion) 🗌 Abandoned	I, Insufficient Supply	Abandoned, Poor Water	^r Quality						
Abandoned, other (s	specify)									
Other (specify)										
8. Construction Record - Casing * (use negative number(s) to indicate depth above ground surface)										
Inside Open Hole or Material (Galvanized, Fibreg Diameter Concrete, Plastic, Steel)			ss, Wall Thickness	Depth From	Depth To					
(in)				(ft)	(ft)					
6.25		Steel	0.188	-2	28					

Open Hole

6

60

28

9. Construction Record - Screen										
Outside Diameter (in)	Material (Plastic, Galvanized, Steel)	Slot Number	Depth From (ft)	Depth To (ft)						

10. Water Details				
Water found at Depth 48 (ft)	🗌 Gas	Kind of water 🗌 Fresh	✓ Untested	Other
Water found at Depth 60	🗌 Gas	Kind of water 🗌 Fresh	Untested	Other

11. Hole Diameter									
Depth From	Depth To	Diameter							
(ft)	(ft)	(in)							
0	20	8.75							
20	28	6.58							
28	60	6							

12. Results of Well Yield Testing														
Pumping Discontinued														
Explain														
If flowing give ra	ate													
Flowing					((GPM)								
Draw down														
Time (min)	Stat Leve	1 1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	12.	5 17.8	18.7	[′] 19.9	21.0	21.9	25.9	27.8	29.4	29.5	33.2	41.2	42.5	43.5
Recovery														
Time (mir	ı)	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Lev (ft)	el	31.4	31.4	31.0	31.0	25.7	22.0	20.2	18.8	17.7	16.5	13.2	13.0	12.9
After test of wel	l yield,	water wa	S					LI	I		I		-1	
✓ Clear and sa	and fre	e 🗌 Oth	ner (speo	cify)										
Pump intake se	t at P	umping ra	te	Duratio	n of pun	nping		Final wa	ater leve	l end of	pumping	j Di	sinfected	? *
54	(ft) 7		(GPM)	2	hrs -	+ 00	min	43.5			(ft)	 ✓]Yes 🗌] No
Recommended	pump	depth	Recom	mended	pump ra	ate We	ll produc	ction				•		
57		(ft) 7 (GPM) 7 (GPM)												
13. Map of W	ell Lo	cation *												

Map 1. Please Click the map area below to import an image file to use as the map.

Make map area bigger

14. Information									
Well owner's information package delivered ✓ Yes □ No		Date Work Completed (yyyy/mm/dd) * 2021/09/23							
Comments Breakaway guides @ 6' & 16'									

15. Well Contractor and Well Technician Information									
Business Name Herb Lang We	of Well Contrac Il Drilling Ltd.	tor *				Well Contractor's License Number * 7560			
Business Add	ress					•			
Unit Number	Street Number 4852		treet Name * lighway 7						
City/Town/Villag Omemee		Prov ON	vince		Postal Code * K0L 2W0				
Business Telephone Number 705-799-7088Business Email Address hlwelldrilling@gmail.com									
Last Name of Well Technician * Kitchen				First Name of Well Technician * Todd			Well Technician's License Number * 2336		
16. Declaratio	on *								
✓ I hereby con and accurate		e perso	on who coi	nstructed the well and I here	eby c	onfirm that	the informatio	on on the form is correct	
Last Name Foster			First Na Garry			Email Address hlwelldrilling@gmail.com			
Signature						Date Subr	mitted (yyyy/m	m/dd)	
				signed by Garry Foster 021.10.04 20:30:02 -04'00'		2021/10/04			
17. Ministry Use Only									
Audit Number									

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

					Well Tag Number *						
								A 319334			
Type *											
✓ Construct	tion	A	bandonm	ent							
Measureme	nt rec	orded in	*								
Metric		🖌 Ir	nperial								
1. Well Ov	vner's	s Infori	mation								
Last Name a	and Fire	st Name	, or Organ	ization is m	nandatory. *						
Last Name						First N	ame				
Organization Triple T Holdings						Email Address					
Current Add	dress					•					
Unit Number		Street 235	Number *	Street I Queen				City/Town/Village Lakefield			
Country Canada					Province Ontario			Postal Code K0L 2H0	Telephone Number		
2. Well Lo	catio	n									
Address of	Well L	ocation									
Unit Number	· Str	eet Num		Street Nam <mark>Seaforth C</mark>				Township Smith			
Lot 26				Concessior 7	1		County/Dist	rict/Municipality ROUGH			
City/Town Lakefield							Province Posta Ontario		Postal Code		
UTM Coordi	nates	Zone *	Easting *	Nc	orthing *			Municipal Plan and	Sublot Number		
NAD 8	3	17	716147	4	921731	Test	UTM in Map				
Other											

3. Overburden and Bedrock Material *										
Well Depth *	70	(ft)								
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To					

			(ft)	(ft)
Black	Topsoil	5	Soft 0	1
Grey	Clay	Pa	icked 1	32
Grey	Limestone	Н	lard 32	70

4. Annular Space *										
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed							
(ft)	(ft)		(cubic feet)							
0	20	Bentonite chips (200 lbs)	200							
0	20	Bentonite slurry (24 gal)	24							

5. Method of Construction *										
Cable Tool	otary (Conventional)	Rotary (Reverse)	Boring Air perc	ussion 🗌 Di	amond					
🗌 Jetting 📃 D	Priving 🗌 Digging	Rotary (Air)	Augering Direct F	lush						
Other (specify)										
6. Well Use *										
o. wen ose										
Public Industrial Cooling & Air Conditioning										
✓ Domestic										
Livestock Municipal Monitoring										
Irrigation	Test Hole	Dewatering								
Other (specify)										
7. Status of Well *										
✓ Water Supply	Replaceme	ent Well	Test Hole							
 Recharge Well	Dewatering	Well	_] Observation and/or Moni	toring Hole						
Alteration (Construction	tion) 🗌 Abandoned	I, Insufficient Supply	Abandoned, Poor Water	Quality						
Abandoned, other (s	specify)									
── ── Other (specify)										
8. Construction Rec	ord - Casing * (use	e negative number(s) to i	ndicate depth above groun	d surface)						
Inside		al (Galvanized, Fibreglas		Depth From	Depth To					
Diameter	Concrete	Plastic, Steel)	Thickness		•					
(in)				(ft)	(ft)					
6.25		Steel	0.188	-2	32					

Open Hole

6

70

32

Outside Diameter (in)	Material (Plastic, Galvanized, Steel)	Slot Number	Depth From (ft)	Depth To (ft)
0. Water Details				
Vater found at Depth 68	(ft) Gas Kind of water 🗌 Fr	esh 🖌 Untested 🗌	Other	

11. Hole Diameter									
Depth From	Depth To	Diameter							
(ft)	(ft)	(in)							
0	20	8.75							
20	70	6							

12. Results of	f Well Y	ield Te	esting													
Pumping Discontinued																
Explain																
If flowing give rate																
Flowing					((GPM)										
Draw down																
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60		
Water Level (ft)	12.5	23.1	23.5	23.8	24.6	24.8	25.5	25.9	26.3	26.5	26.7	26.8	27.0	27.1		
Recovery																
Time (mir	1)	1	2	3	4	5	10	15	20	25	30	40	50	60		
Water Lev (ft)	el	26.7	26.7	26.5	25.9	25.0	20.9	19.8	16.7	15.4	13.2	12.5	12.5	12.5		
After test of wel	l yield, w	vater wa	s										-			
✓ Clear and sa	and free	🗌 Oth	ner (spe	cify)												
Pump intake se	t at Pur	mping ra	te	Duratio	n of pun	nping		Final wa	ater leve	I end of	pumpin	g Dis	sinfected	? *		
67	(ft) <mark>6</mark>		(GPM)	2	hrs -	+ 00	min	27.1			(ft)	\checkmark	Yes 🗌] No		
Recommended	pump d	epth	Recom	mended	pump ra	ate We	ell produc	ction				•				
67		(ft)	6		(GF	PM) <mark>6</mark>			(GPM)							
13. Map of Well Location *																
Map 1. Please Cl	ick the m	ap area b	elow to i	mport an	image fil	e to use	as the ma	ıp.	Ma	ke map a	area big	ger				

14. Information										
Well owner's information package delivered ✓ Yes □ No	Date Package Delivered (yyyy/mm/dd) 2021/08/05	Date Work Completed (yyyy/mm/dd) * 2021/09/27								
Comments Breakaway guides @ 6' & 16'										

15. Well Contractor and Well Technician Information										
Business Name Herb Lang We	e of Well Contrac ell Drilling Ltd.	tor *				Well Contractor's License Number * 7560				
Business Add	Business Address									
Unit Number	Street Number 4852		Street Name * Highway 7							
					Prov ON	vince		Postal Code * K0L 2W0		
Business Telephone Number 705-799-7088Business Email Address hlwelldrilling@gmail.com										
Last Name of Well Technician * Kitchen				First Name of Well Technician * Todd			Well Technician's License Number * 2336			
16. Declaratio	on *									
✓ I hereby con and accurate		e persc	on who coi	nstructed the well and I here	eby c	onfirm that	the informatio	on on the form is correct		
Last Name Foster			First Na Garry	me		Email Address hlwelldrilling@gmail.com				
Signature						Date Subr	mitted (yyyy/m	m/dd)		
			/ signed by Garry Foster 021.10.04 20:33:58 -04'00'		2021/10/04					
17. Ministry L	Jse Only									
Audit Number	Audit Number									
CLHP C2PV	CLHP C2PV									

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

Well Tag Number *						umber *					
								A 319324			
Type *											
Constructio	n	A	bandonm	ent							
Measurement	reco	rded in	*								
Metric		🖌 In	nperial								
1. Well Owr	ner's	Inform	nation								
Last Name and	d First	Name,	or Orgar	ization is n	nandatory. *						
Last Name						First Na	ame				
Organization Triple T Holdings						Email Address					
Current Addre	ess										
Unit Number		Street I <mark>235</mark>	Number *	Street Queer	Name * n St.			City/Town/Village Lakefield			
Country Canada	·				Province Ontario			Postal Code K0L 2H0	Telephone Number		
2. Well Loc	ation										
Address of W	ell Lo	cation									
Unit Number	Stre 0	et Num		Street Nam L <mark>akefield</mark> I				Township Smith			
Lot 26				Concessior 7	า		County/Dist	rict/Municipality ROUGH			
City/Town Lakefield							Province Po Ontario		Postal Code		
UTM Coordina	tes Z	Zone *	Easting *	No	orthing *			Municipal Plan and	I Sublot Number		
NAD 83		17	716163	4	921189	Test	UTM in Map				
Other											

3. Overburden a	len and Bedrock Material *								
Well Depth *	65	(ft)							
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To				

				(ft)	(ft)
Black	Topsoil		Soft	0	1
Grey	Clay	Stones	Packed	1	30
Grey	Limestone		Hard	30	65

4. Annular Space *										
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed							
(ft)	(ft)		(cubic feet)							
0	20	Bentonite chips (300 lbs)	300							
0	20	Bentonite slurry (24 gal)	24							

5. Method of Constru	uction *								
Cable Tool	otary (Conventional)	Rotary (Reverse)	Boring Air per	cussion 🗌 Di	amond				
Jetting D	riving 🗌 Digging	Rotary (Air)	Augering Direct	Push					
Other (specify)									
6. Well Use *									
Public	Industrial	Cooling & Air Cor	nditioning						
Domestic	Commercial	Not Used							
Livestock	Municipal	Monitoring							
Irrigation	Test Hole	Dewatering							
Other (specify)									
7. Status of Well *									
🗸 Water Supply	Replaceme	ent Well	Test Hole						
Recharge Well	Dewatering	Well	Observation and/or Monitoring Hole						
Alteration (Construction	tion) 🗌 Abandoned	I, Insufficient Supply	Abandoned, Poor Water	^r Quality					
Abandoned, other (s	specify)								
Other (specify)									
8. Construction Rec	ord - Casing * (use	e negative number(s) to i	ndicate depth above grour	nd surface)					
Inside Diameter	-	al (Galvanized, Fibreglas , Plastic, Steel)	ss, Wall Thickness	Depth From	Depth To				
(in)				(ft)	(ft)				
6.25		Steel	0.188	-2	30				

Open Hole

6

65

30

9. Construction Record - Screen									
Outside	Material	Slot							
Diameter	(Plastic, Galvanized, Steel)	Number	Depth From	Depth To					
(in)			(ft)	(ft)					


10. Water Details				
Water found at Depth 32 (ft)	🗌 Gas	Kind of water 🗌 Fresh	Untested	Other
Water found at Depth 60	🗌 Gas	Kind of water 🗌 Fresh	Untested	Other

11. Hole Diameter									
Depth From	Depth To	Diameter							
(ft)	(ft)	(in)							
0	20	8.75							
20	65	6							

12. Results of Well Yield Testing

Pumping Discontinued														
Explain														
If flowing give ra	te													
Flowing					(GPM)								
Draw down														
Time (min)	Stat Lev		2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	11.	.4 14.4	4 15.4	15.9	16.4	16.9	18.3	18.9	19.4	19.7	19.9	20.1	20.2	20.2
Recovery														
Time (min))	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Leve (ft)	el	16.7	15.3	14.7	13.2	12.9	11.9	11.4	11.4	11.4	11.4	11.4	11.4	11.4
After test of well	yield	, water wa	is	I	1	1		I I I I I I I I I I I I I I I I I I I	1				1	
✓ Clear and sat	nd fre	e 🗌 Ot	her (spe	cify)										
Pump intake set	at P	Pumping ra	ate	Duratio	n of pum	ping		Final wa	ater leve	I end of	pumping	g Di	sinfected	? *
62 ((ft) 4.5 (GPM) 2 hrs + 00 min 20.2 (ft) Ves No] No					
Recommended p	oump	depth	Recom	mended	pump ra	ite We	ll produ	ction						
62 (ft) 4.5 (GPM) 6 (GPM)														
13. Map of We	ll Lo	cation *												

Map 1. Please Click the map area below to import an image file to use as the map.

14. Information		
Well owner's information package delivered ✔ Yes	Date Package Delivered (yyyy/mm/dd) 2021/08/05	Date Work Completed (yyyy/mm/dd) * 2021/09/17
Comments Breakaway guides @ 6' & 16'		

15. Well Con	tractor and We	ell Tech	nician Infor	mation				
Business Name of Well Contractor * Herb Lang Well Drilling Ltd.						Well Contractor's License Number * 7560		
Business Add	Iress							
Unit Number	Street Number 4852		eet Name * ghway 7					
City/Town/Villa Omemee	ige *	·			Prov ON	vince		Postal Code * K0L 2W0
Business Teler 705-799-7088			ss Email Addre drilling@gmai					
Last Name of \ Kitchen	Well Technician *			First Name of Well Technician * Well Technicia Todd 2336		ian's License Number *		
16. Declarati	on *							
✓ I hereby co and accura		e perso	n who construc	cted the well and I he	reby c	confirm tha	t the information	on on the form is correct
Last Name Foster			First Name Garry			Email Ade hlwelldri	dress lling@gmail.c	com
Signature						Date Sub	mitted (yyyy/n	nm/dd)
Garry FosterDigitally signed by Garry Foster2021/10/04Date: 2021.10.04 20:26:53 -04'00'2021/10/04						/10/04		
17. Ministry	Use Only							
Audit Number								
ZFDY X4JS								

Appendix D Water Quality Analysis and Certificates of Analysis

Summary of Groundwater Quality Results

	Test Well #1		Test V	Vell #2	Test Well #3			
Parameter	Units	ODWQS	25-Oct-21	27-Jan-22	26-Oct-21	09-Feb-22	27-Oct-21	18-Feb-22
Total Coliform	cfu/100mL	1	100	320	5	4	3	1
E. Coli	cfu/100mL	1	0	0	0	< 2	0	0
Alkalinity	mg/L as CaCO3	30-500	187	218	198	235	235	250
pH	No unit	6.5-8.5	8.08	8.15	8.17	8.37	8.06	8.19
Conductivity	uS/cm	-	1070	1090	1040	1040	1220	1300
Chloride	mg/L	250	220	260	210.0	210	260	300
Nitrite (as N)	as N mg/L	1	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	10	0.14	0.14	0.92	0.65	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L	-	0.14	0.14	0.92	0.65	< 0.06	< 0.06
Sulphate	mg/L	500	32	37	26	34	35	46
Colour	TCU	5	4	< 3	<3	< 3	<3	< 3
Turbidity	NTU	5	37.10	8.31	2.32	2.05	34.60	15.70
Fluoride	mg/L	1.5	0.20	0.18	0.28	0.25	0.24	0.38
Dissolved Organic Carbon	mg/L	5	1	1	1	1	2	1
Total Kjeldahl Nitrogen	as N mg/L	-	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
Ammonia+Ammonium (N)	as N mg/L	10	< 0.1	< 0.1	0.2	0.2	0.2	0.3
Organic Nitrogen	mg/L	0.15	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
Total Dissolved Solids	mg/L	500	634	663	431	583	674	811
Hardness (dissolved)	mg/L as CaCO3	80-100	387	477	366	407	337	391
Silver (dissolved)	mg/L	-	< 0.00005	0.00006	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Aluminum (dissolved)	mg/L		0.138	0.188	0.011	0.002	0.001	0.135
Arsenic (dissolved)	mg/L	0.025	0.0004	0.0004	0.0008	0.0003	< 0.0002	< 0.0002
Barium (dissolved)	mg/L	1	0.25500	0.24300	0.26600	0.251	0.316	0.326
Beryllium (dissolved)	mg/L	-	0.000014	0.000012	< 0.000007	0.00008	< 0.000007	0.000009
Boron (dissolved)	mg/L		0.093	0.061	0.124	0.141	0.096	0.123
Bismuth (dissolved)	mg/L	-	<0.00001	0.00002	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Calcium (dissolved)	mg/L	-	94.8	135.0	88.6	111	109	130
Cadmium (dissolved)	mg/L	0.005	< 0.000003	< 0.000003	< 0.000003	0.000005	< 0.000003	0.000004
Cobalt (dissolved)	mg/L	-	0.000261	0.000288	0.000072	0.000092	0.000056	0.000088
Chromium (dissolved)	mg/L	0.05	0.00064	0.00124	0.00037	0.00011	< 0.00008	0.00099
Copper (dissolved)	mg/L	1	0.0007	0.0032	< 0.0002	0.0004	0.0004	0.0031
Iron (dissolved)	mg/L	0.3	0.236	0.357	0.279 2.74	0.320	< 0.007 3.40	1.11 4.60
Potassium (dissolved)	mg/L	-	2.30 0.0151	2.36 0.0154	0.0219	3.34 0.0202	0.0254	0.0298
Lithium (dissolved) Magnesium (dissolved)	mg/L		36.60	34.10	35.10	31.3	15.7	16.0
Manganese (dissolved)	mg/L mg/L	- 0.05	0.02840	0.03330	0.01340	0.0164	0.00574	0.04360
		0.05	0.00073		0.01340		0.00048	0.00043
Molybdenum (dissolved)	mg/L	-		0.00080		0.00154		
Sodium (dissolved)	mg/L	20	55.00	64.00	55.5	53.0	115	133
Nickel (dissolved)	mg/L	-	0.0009	0.0013	0.0011	0.0010	0.0005	0.0006
Phosphorus (dissolved)	mg/L	-	0.022	0.021	0.009	0.006	< 0.003	0.116
Lead (dissolved)	mg/L	0.01	0.00019	0.00019	0.00012	0.00011	< 0.00009	0.00022
Antimony (dissolved)	mg/L	0.006	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Selenium (dissolved)	mg/L	0.01	0.00011	0.00010	0.00009	0.00010	< 0.00004	< 0.00004
Silicon (dissolved)	mg/L		9.16	12.30	7.95	10.3	6.45	6.51
Tin (dissolved)	mg/L		<0.00006	0.00007	0.00037	< 0.00006	< 0.00006	0.00015
		-						
Strontium (dissolved)	mg/L	-	2.04	2.30	1.75	2.14	0.469	0.749
Titanium (dissolved)	mg/L	-	0.00847	0.01510	0.00082	0.00018	< 0.00005	0.0128
Thallium (dissolved)	mg/L	-	< 0.000005	0.000012	< 0.000005	0.000005	< 0.000005	< 0.000005
Uranium (dissolved)	mg/L	0.02	0.000403	0.000414	0.000538	0.000719	0.000061	0.000082
Vanadium (dissolved)	mg/L	-	0.00056	0.00082	0.00028	0.00023	0.00004	0.00033
Tungsten (dissolved)	mg/L		0.00007	0.00006	0.00012	0.00010	0.00002	0.00002
Yttrium (dissolved)	mg/L		0.00030	0.00030	0.00003	0.00002	< 0.00002	0.00085
Zinc (dissolved)		F		0.009				
	mg/L	5	0.004	0.009	0.003	0.003	< 0.002	0.017

CA14434-OCT21 R1

11598-001

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Cambium Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	194 Sophia Street, Peterborough	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, K9H 1E5		
	Phone: 705-742-7900. Fax:		
Contact	Kevin Warner	Telephone	705-652-2143
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	kevin.warner@cambium-inc.com	SGS Reference	CA14434-OCT21
Project	11598-001	Received	10/26/2021
Order Number		Approved	11/02/2021
Samples	Ground Water (1)	Report Number	CA14434-OCT21 R1
		Date Reported	11/02/2021

COMMENTS

Temperature of Sample upon Receipt: 12 degrees C Cooling Agent Present: Yes Custody Seal Present: No

Chain of Custody Number: 023159

Colour DUP % RPD appears high, but results are withing DL of each other

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	
QC Summary	
Legend	
Annexes	17

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willem Verduyn

PACKAGE: - General Chemistry (Sample Number	5
	,		Sample Name	Test Well 1
			Sample Matrix	Ground Water
			Sample Date	25/10/2021
Parameter	Units	RL		Result
General Chemistry				
Alkalinity	mg/L as	2		187
	CaCO3			
Conductivity	uS/cm	2		1070
Colour	TCU	3		4
Turbidity	NTU	0.10		37.1
Dissolved Organic Carbon	mg/L	1		1
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Ammonia+Ammonium (N)	as N mg/L	0.1		< 0.1
Organic Nitrogen	mg/L	0.5		< 0.5
Total Dissolved Solids	mg/L	30		634

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willem Verduyn

			Operate Mission	-
ACKAGE: - Metals and Inorganics	s (WATER)		Sample Number	5
			Sample Name	Test Well 1
			Sample Matrix	Ground Water
			Sample Date	25/10/2021
Parameter	Units	RL		Result
etals and Inorganics				
Nitrite (as N)	as N mg/L	0.03		< 0.03
Nitrate (as N)	as N mg/L	0.06		0.14
Nitrate + Nitrite (as N)	as N mg/L	0.06		0.14
Sulphate	mg/L	2		32
Fluoride	mg/L	0.06		0.20
Hardness (dissolved)	mg/L as	0.05		387
	CaCO3			
Silver (dissolved)	mg/L	0.00005		< 0.00005
Aluminum (dissolved)	mg/L	0.001		0.138
Arsenic (dissolved)	mg/L	0.0002		0.0004
Barium (dissolved)	mg/L	0.00002		0.255
Beryllium (dissolved)	mg/L	0.00000		0.000014
		7		
Boron (dissolved)	mg/L	0.002		0.093
Bismuth (dissolved)	mg/L	0.00001		< 0.00001
Calcium (dissolved)	mg/L	0.01		94.8
Cadmium (dissolved)	mg/L	0.00000		< 0.000003
		3		
Cobalt (dissolved)	mg/L	0.00000		0.000261
		4		
Chromium (dissolved)	mg/L	0.00008		0.00064
Copper (dissolved)	mg/L	0.0002		0.0007
Iron (dissolved)	mg/L	0.007		0.236
Potassium (dissolved)	mg/L	0.009		2.30

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willem Verduyn

			Sample Number	5
PACKAGE: - Metals and Inorganics (W	VAIER)			
			Sample Name	Test Well 1
			Sample Matrix	Ground Water
			Sample Date	25/10/2021
Parameter	Units	RL		Result
letals and Inorganics (continued)				
Lithium (dissolved)	mg/L	0.0001		0.0151
Magnesium (dissolved)	mg/L	0.001		36.6
Manganese (dissolved)	mg/L	0.00001		0.0284
Molybdenum (dissolved)	mg/L	0.00004		0.00073
Sodium (dissolved)	mg/L	0.01		55.0
Nickel (dissolved)	mg/L	0.0001		0.0009
Phosphorus (dissolved)	mg/L	0.003		0.022
Lead (dissolved)	mg/L	0.00009		0.00019
Antimony (dissolved)	mg/L	0.0009		< 0.0009
Selenium (dissolved)	mg/L	0.00004		0.00011
Silicon (dissolved)	mg/L	0.02		9.16
Tin (dissolved)	mg/L	0.00006		< 0.00006
Strontium (dissolved)	mg/L	0.00002		2.04
Titanium (dissolved)	mg/L	0.00005		0.00847
Thallium (dissolved)	mg/L	0.00000		< 0.000005
	-	5		
Uranium (dissolved)	mg/L	0.00000		0.000403
		2		
Vanadium (dissolved)	mg/L	0.00001		0.00056
Tungsten (dissolved)	mg/L	0.00002		0.00007
Yttrium (dissolved)	mg/L	0.00002		0.00030
Zinc (dissolved)	mg/L	0.002		0.004

SGS				FINAL REPORT	CA14434-OCT21 R1 Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner Samplers: Willem Verduyn
PACKAGE: - Microbiology (WATER)			Sample Number	5	
			Sample Name	Test Well 1	
			Sample Matrix	Ground Water	
			Sample Date	25/10/2021	
Parameter	Units	RL		Result	
Microbiology					
Total Coliform	cfu/100mL	-		100	
E. Coli	cfu/100mL	-		0	
PACKAGE: - Other (ORP) (WATER)			Sample Number	5	
			Sample Name	Test Well 1	
			Sample Matrix	Ground Water	
			Sample Date	25/10/2021	
Parameter	Units	RL		Result	
Other (ORP)					
рН	No unit	0.05		8.08	
Chloride	mg/L	1		220	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0608-OCT21	mg/L as CaCO3	2	< 2	0	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0288-OCT21	as N mg/L	0.1	<0.1	ND	10	101	90	110	97	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5078-OCT21	mg/L	1	<1	3	20	96	80	120	96	75	125
Sulphate	DIO5078-OCT21	mg/L	2	<2	ND	20	97	80	120	115	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0592-OCT21	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0592-OCT21	mg/L	0.03	<0.03	ND	20	98	90	110	97	75	125
Nitrate (as N)	DIO0592-OCT21	mg/L	0.06	<0.06	10	20	102	90	110	105	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	plicate LC		CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0025-NOV21	mg/L	1	<1	3	20	103	90	110	94	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference	Reference Blank RPD AC Spike		Spike	Spike Recovery Limits		Spike	Recovery Limits				
					•		Recovery		%)	Recovery	(%	6)
						(70)	(%)	Low	High	(%)	Low	High
Colour	EWL0595-OCT21	TCU	3	< 3	29	10	100	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0608-OCT21	uS/cm	2	2	0	20	98	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
					RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0585-OCT21	mg/L	0.06	<0.06	4	10	99	90	110	89	75	125

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0194-OCT21	mg/L	0.00005	<0.00005	ND	20	98	90	110	104	70	130
Aluminum (dissolved)	EMS0194-OCT21	mg/L	0.001	<0.001	ND	20	104	90	110	115	70	130
Arsenic (dissolved)	EMS0194-OCT21	mg/L	0.0002	<0.0002	ND	20	106	90	110	118	70	130
Barium (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	2	20	101	90	110	87	70	130
Beryllium (dissolved)	EMS0194-OCT21	mg/L	0.000007	<0.00007	ND	20	93	90	110	99	70	130
Boron (dissolved)	EMS0194-OCT21	mg/L	0.002	<0.002	3	20	97	90	110	99	70	130
Bismuth (dissolved)	EMS0194-OCT21	mg/L	0.00001	<0.00001	ND	20	100	90	110	90	70	130
Calcium (dissolved)	EMS0194-OCT21	mg/L	0.01	<0.01	8	20	102	90	110	120	70	130
Cadmium (dissolved)	EMS0194-OCT21	mg/L	0.000003	<0.000003	ND	20	102	90	110	102	70	130
Cobalt (dissolved)	EMS0194-OCT21	mg/L	0.000004	<0.000004	ND	20	100	90	110	107	70	130
Chromium (dissolved)	EMS0194-OCT21	mg/L	0.00008	<0.00008	5	20	92	90	110	95	70	130
Copper (dissolved)	EMS0194-OCT21	mg/L	0.0002	<0.0002	ND	20	97	90	110	125	70	130
Iron (dissolved)	EMS0194-OCT21	mg/L	0.007	<0.007	0	20	108	90	110	100	70	130
Potassium (dissolved)	EMS0194-OCT21	mg/L	0.009	<0.009	ND	20	104	90	110	98	70	130
Lithium (dissolved)	EMS0194-OCT21	mg/L	0.0001	<0.0001	ND	20	101	90	110	96	70	130
Magnesium (dissolved)	EMS0194-OCT21	mg/L	0.001	<0.001	19	20	105	90	110	89	70	130
Manganese (dissolved)	EMS0194-OCT21	mg/L	0.00001	<0.00001	ND	20	102	90	110	102	70	130
Molybdenum (dissolved)	EMS0194-OCT21	mg/L	0.00004	<0.00004	ND	20	101	90	110	105	70	130
Sodium (dissolved)	EMS0194-OCT21	mg/L	0.01	<0.01	ND	20	106	90	110	114	70	130
Nickel (dissolved)	EMS0194-OCT21	mg/L	0.0001	<0.0001	ND	20	96	90	110	92	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(70)		Low	High	(%)	Low	High
Lead (dissolved)	EMS0194-OCT21	mg/L	0.00009	<0.00001	ND	20	102	90	110	97	70	130
Phosphorus (dissolved)	EMS0194-OCT21	mg/L	0.003	<0.003	ND	20	108	90	110	NV	70	130
Antimony (dissolved)	EMS0194-OCT21	mg/L	0.0009	<0.0009	ND	20	108	90	110	98	70	130
Selenium (dissolved)	EMS0194-OCT21	mg/L	0.00004	<0.00004	ND	20	95	90	110	75	70	130
Silicon (dissolved)	EMS0194-OCT21	mg/L	0.02	<0.02	0	20	109	90	110	NV	70	130
Tin (dissolved)	EMS0194-OCT21	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Strontium (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	10	20	96	90	110	82	70	130
Titanium (dissolved)	EMS0194-OCT21	mg/L	0.00005	<0.00005	ND	20	98	90	110	NV	70	130
Thallium (dissolved)	EMS0194-OCT21	mg/L	0.000005	<0.000005	ND	20	103	90	110	83	70	130
Uranium (dissolved)	EMS0194-OCT21	mg/L	0.000002	<0.000002	0	20	99	90	110	98	70	130
Vanadium (dissolved)	EMS0194-OCT21	mg/L	0.00001	<0.00001	ND	20	99	90	110	119	70	130
Tungsten (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	ND	20	97	90	110	NV	70	130
Yttrium (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	ND	20	103	90	110	NV	70	130
Zinc (dissolved)	EMS0194-OCT21	mg/L	0.002	<0.002	ND	20	95	90	110	78	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Spike (%)	Recovery Limits Spike (%) Recovery		Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9420-OCT21	cfu/100mL	-	ACCEPTED	ACCEPTE								
					D								
Total Coliform	BAC9420-OCT21	cfu/100mL	-	ACCEPTED	ACCEPTE								
					D								

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
рН	EWL0608-OCT21	No unit	0.05	NA	0		100			NA		

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover (۹	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0609-OCT21	mg/L	30	<30	1	20	99	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0290-OCT21	as N mg/L	0.5	<0.5	8	10	109	90	110	76	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	E.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0584-OCT21	NTU	0.10	< 0.10	9	10	97	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

- London	London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	n, ON, N6E 2S8 Phone	519-672-4500 I oll Free: t	77-848-8060 Fax: 519	-672-0361				- a	IO aDF
Provised By Hillory N	Received By (signature):	Labor	Laboratory Information Section - Lab use	ction - Lab use c	only					
Received Date: <u>/0</u> / <u>25 / 2/</u> (mm/dd/yy) Received Time: // : <u>50</u> (hr : min)	Custody Seal Present: Custody Seal Intact:	ant: Yes I No I		Cooling Agent Present: Yes	The Type:	le		LAB LIMS #: (LAB LIMS # CAIH43	124-
EPORT INFORMATIC	INVOICE INFORMATION	TION							0	CT21
Company: CANDIUM X (se	(same as Report Information)		Quotation #:				P.O. #:			
Kevin Vunner o	ny:		Project #: 11598	100-1			Site Location/ID:			
Address: 194 DUPNIL STREET Contact.	ſ				TURNAR	OUND TIME	TURNAROUND TIME (TAT) REQUIRED	siness days (exclud	le statutory ho	olidays & weekends).
Voter arough Address:	S.		🔀 Regular TAT (5-7days)	(5-7days)			Samples received after 6pm or on weekends: TAT begins next business day	r 6pm or on weeken	ids: TAT begi	ins next business day
Phone:			RUSH TAT (Additional Charges May Ap PLEASE CONFIRM RUSH FEASIBILITY		ply): 1 Day	ay 2 Days	ply): 1 Day 2 Days 3 Days 4 Days	Days		-
Nevin, weiner	-		Specify Due Date:		*NOTE: DRI	VKING (POT/	*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	FOR HUMAN CON	NSUMPTION SUSTODY	MUST BE SUBMITTED
REGU	SN			A	ANALYSIS REQUESTED	EQUES	ED			
O.Reg 153/04 O.Reg 406/19 Othe	Other Regulations:	Sewer By-Law:	M&1	SVOC PCB	PHC VOC	C Pest	Other (please specify)	pecify) SPLP	PTCLP	
Table 1 Res/Park Soil Texture: R Table 2 Ind/Com Coarse P Table 3 Apri/Other Medium/Fine Coarse	Reg 347/558 (3 Day min TAT) PWQO MMER ICCME Other:	Sanitary		or []			Mail	Specify tests	y Specify tests	
Table Appx. Implementation Soil Volume <350m3] ODWS Not Reportable *See note		ICS ,SAR-so Hg, CrVI	Arc			F.			
RECORD OF SITE CONDITION (RSC)			organ (HWS),E0 Suite S-soil only	28	X	ecify othe	AGA6	Extended		
D. D. SAMPLE IDENTIFICATION	DATE TIME # SAMPLED SAMPLED BOT	# OF BOTTLES MATRIX	Field Filtered Metals & Inc incl CrVI. CNI.Hg pH.(B (CI, Na-water) Full Metals S ICP metals plus B(HWS ICP Metals o	Sb,As,Ba,Be,B,Cd,Cr,C PAHs only SVOCS all incl PAHs, ABNs, CF PCBs Tot	F1-F4 + BTE F1-F4 only no BTEX VOCs all incl BTEX	BTEX only Pesticides Organochiorine or spe	See atta	Sewer Use: Specify pkg: Water Charact General	□ B(a)P □ ABN □ Ignit	
Test went I 10/2	28/21 17:15	7 GW			1.1.1.1.1.1.1					
2										
ω			25-74 25-74							
4										
<u>5</u>										
5										
7										
8										
9										
10										
1			08							
12										
Observations/Comments/Special Instructions										
Sampled By (NAME): Marcheller	Sign Sign	Signature: Willim	n Welyn	8		Date: 10	125 1 2021	(mm/dd/yy)	Pin	Pink Copy - Client
Relinquished by (NAME): <u>Alassado</u>	e usillem sign	Signature: Mille	en thench	laya		Date: 10	12512021	(mm/dd/yy)	Ye	Yellow & White Copy - SGS
Note: Submission of samples to SGS is acknowledgement rial (e.g. shipping documents). All provided direction of sample contract, or in an alternative format (e.g. shipping documents) and unsupported direction of addresses for no additional cost. Fax is available upon request. This available upon request.	(e.g. shipping documents). {3} Resuments a	and conditions htm (Printe	an unlimited number of addres	ses for no additional cost. uest) Attention is drawn to	Fax is available upon rec	uest. This doc	iment is issued by the Compa and iurisdiction issues defined	iny under its General C d therein.	Conditions of Se	wrice accessible at

Request for Laboratory Services and CHAIN OF CUSTODY

CA12675-JAN22 R1

11598-001

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	S
Client	Cambium Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	194 Sophia Street, Peterborough	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, K9H 1E5		
	Phone: 705-742-7900. Fax:		
Contact	Kevin Warner	Telephone	705-652-2143
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	kevin.warner@cambium-inc.com	SGS Reference	CA12675-JAN22
Project	11598-001	Received	01/27/2022
Order Number		Approved	02/03/2022
Samples	Ground Water (1)	Report Number	CA12675-JAN22 R1
_		Date Reported	02/03/2022

COMMENTS

Temperature of Sample upon Receipt: Cooling Agent Present: Custody Seal Present:

Chain of Custody Number:

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	
QC Summary	6-14
Legend	
Annexes	

SGS	

Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner Samplers: Willem Verduyn

IATRIX: WATER			Sample Number	5
ATRIA. WATER			Sample Name	TW1
			Sample Matrix	
			Sample Date	27/01/2022
Parameter	Units	RL		Result
eneral Chemistry				
Alkalinity	mg/L as CaCO3	2		218
Conductivity	uS/cm	2		1090
Colour	TCU	3		< 3
Turbidity	NTU	0.10		8.31
Dissolved Organic Carbon	mg/L	1		1
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Ammonia+Ammonium (N)	as N mg/L	0.1		< 0.1
Organic Nitrogen	mg/L	0.5		< 0.5
Total Dissolved Solids	mg/L	30		663
letals and Inorganics		1		
Nitrite (as N)	as N mg/L	0.03		< 0.03
Nitrate (as N)	as N mg/L	0.06		0.14
Nitrate + Nitrite (as N)	as N mg/L	0.06		0.14
Sulphate	mg/L			37
Fluoride	mg/L			0.18
Hardness (dissolved)	mg/L as CaCO3			477
Silver (dissolved)				0.00006
Aluminum (dissolved)	mg/L			0.188
Arsenic (dissolved)	mg/L			0.0004
Barium (dissolved)				0.243
Beryllium (dissolved)		0.000002		0.000012
Boron (dissolved)	mg/L			0.061
Boron (dissolved)	IIIy/L	0.002		0.001

Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner

MATRIX: WATER		Sample Number	5
VATER		Sample Name	TW1
		Sample Name	Ground Water
		Sample Date	27/01/2022
Parameter	Units RL		Result
Metals and Inorganics (continued)			
Bismuth (dissolved)	mg/L 0.00001		0.00002
Calcium (dissolved)	mg/L 0.01		135
Cadmium (dissolved)	mg/L 0.000003		< 0.000003
Cobalt (dissolved)	mg/L 0.000004		0.000288
Chromium (dissolved)	mg/L 0.00008		0.00124
Copper (dissolved)	mg/L 0.0002		0.0032
Iron (dissolved)	mg/L 0.007		0.357
Potassium (dissolved)	mg/L 0.009		2.36
Lithium (dissolved)	mg/L 0.0001		0.0154
Magnesium (dissolved)	mg/L 0.001		34.1
Manganese (dissolved)	mg/L 0.00001		0.0333
Molybdenum (dissolved)	mg/L 0.00004		0.00080
Sodium (dissolved)	mg/L 0.01		64.0
Nickel (dissolved)	mg/L 0.0001		0.0013
Phosphorus (dissolved)	mg/L 0.003		0.021
Lead (dissolved)	mg/L 0.00009		0.00019
Antimony (dissolved)	mg/L 0.0009		< 0.0009
Selenium (dissolved)	mg/L 0.00004		0.00010
Silicon (dissolved)	mg/L 0.02		12.3
Tin (dissolved)	mg/L 0.00006		0.00007
Strontium (dissolved)	mg/L 0.00002		2.30
Titanium (dissolved)	mg/L 0.00005		0.0151

Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner

MATRIX: WATER			Sample Number	5
			Sample Name	TW1
			Sample Matrix	Ground Water
			Sample Date	27/01/2022
Parameter	Units	RL		Result
Metals and Inorganics (continued)				
Thallium (dissolved)	mg/L	0.000005		0.000012
Uranium (dissolved)	mg/L	0.000002		0.000414
Vanadium (dissolved)	mg/L	0.00001		0.00082
Tungsten (dissolved)	mg/L	0.00002		0.00006
Yttrium (dissolved)	mg/L	0.00002		0.00030
Zinc (dissolved)	mg/L	0.002		0.009
Microbiology				
Total Coliform	cfu/100mL	0		320
E. Coli	cfu/100mL	0		0
Other (ORP)				
рН	No unit	0.05		8.15
Chloride	mg/L	1		260

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	licate	LC	S/Spike Blank		м	latrix Spike / Ref	F.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0420-JAN22	mg/L as CaCO3	2	< 2	1	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Rei	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0003-FEB22	as N mg/L	0.1	<0.1	ND	10	98	90	110	NV	75	125

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	latrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5001-FEB22	mg/L	2	<2	8	20	109	80	120	85	75	125
Chloride	DIO5002-FEB22	mg/L	1	<1	0	20	111	80	120	82	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	
	Reference			Blank	RPD AC Spike (%) Recovery		ry Limits %)	Spike Recovery		ry Limits %)		
						(%)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0415-JAN22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0415-JAN22	mg/L	0.03	<0.03	14	20	100	90	110	102	75	125
Nitrate (as N)	DIO0415-JAN22	mg/L	0.06	<0.06	0	20	103	90	110	102	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Re	
Reference	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Dissolved Organic Carbon	SKA0218-JAN22	mg/L	1	<1	ND	20	99	90	110	99	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0443-JAN22	TCU	3	< 3	ND	10	100	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0420-JAN22	uS/cm	2	4	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover (9	-
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Fluoride	EWL0436-JAN22	mg/L	0.06	<0.06	4	10	102	90	110	NV	75	125

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0019-FEB22	mg/L	0.00005	<0.00005	ND	20	104	90	110	74	70	130
Aluminum (dissolved)	EMS0019-FEB22	mg/L	0.001	<0.001	ND	20	98	90	110	98	70	130
Arsenic (dissolved)	EMS0019-FEB22	mg/L	0.0002	<0.0002	ND	20	104	90	110	109	70	130
Barium (dissolved)	EMS0019-FEB22	mg/L	0.00002	<0.00002	4	20	100	90	110	98	70	130
Beryllium (dissolved)	EMS0019-FEB22	mg/L	0.000007	<0.000007	ND	20	99	90	110	109	70	130
Boron (dissolved)	EMS0019-FEB22	mg/L	0.002	<0.002	5	20	107	90	110	108	70	130
Bismuth (dissolved)	EMS0019-FEB22	mg/L	0.00001	<0.00001	ND	20	91	90	110	84	70	130
Calcium (dissolved)	EMS0019-FEB22	mg/L	0.01	<0.01	7	20	100	90	110	109	70	130
Cadmium (dissolved)	EMS0019-FEB22	mg/L	0.000003	<0.000003	ND	20	102	90	110	113	70	130
Cobalt (dissolved)	EMS0019-FEB22	mg/L	0.000004	<0.000004	ND	20	104	90	110	111	70	130
Chromium (dissolved)	EMS0019-FEB22	mg/L	0.00008	<0.00008	ND	20	104	90	110	110	70	130
Copper (dissolved)	EMS0019-FEB22	mg/L	0.0002	<0.0002	ND	20	102	90	110	109	70	130
Iron (dissolved)	EMS0019-FEB22	mg/L	0.007	<0.007	ND	20	101	90	110	100	70	130
Potassium (dissolved)	EMS0019-FEB22	mg/L	0.009	<0.009	4	20	98	90	110	109	70	130
Lithium (dissolved)	EMS0019-FEB22	mg/L	0.0001	<0.0001	3	20	102	90	110	109	70	130
Magnesium (dissolved)	EMS0019-FEB22	mg/L	0.001	<0.001	3	20	94	90	110	107	70	130
Manganese (dissolved)	EMS0019-FEB22	mg/L	0.00001	<0.00001	ND	20	102	90	110	107	70	130
Molybdenum (dissolved)	EMS0019-FEB22	mg/L	0.00004	<0.00004	ND	20	102	90	110	100	70	130
Sodium (dissolved)	EMS0019-FEB22	mg/L	0.01	<0.01	4	20	101	90	110	97	70	130
Nickel (dissolved)	EMS0019-FEB22	mg/L	0.0001	<0.0001	ND	20	103	90	110	109	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery	Recove	-
						(%)	(%)	Low	High	(%)	Low	High
Lead (dissolved)	EMS0019-FEB22	mg/L	0.00009	<0.00001	ND	20	98	90	110	97	70	130
Phosphorus (dissolved)	EMS0019-FEB22	mg/L	0.003	<0.003	ND	20	99	90	110	NV	70	130
Antimony (dissolved)	EMS0019-FEB22	mg/L	0.0009	<0.0009	ND	20	103	90	110	87	70	130
Selenium (dissolved)	EMS0019-FEB22	mg/L	0.00004	<0.00004	ND	20	101	90	110	93	70	130
Silicon (dissolved)	EMS0019-FEB22	mg/L	0.02	<0.02	8	20	98	90	110	NV	70	130
Tin (dissolved)	EMS0019-FEB22	mg/L	0.00006	<0.00006	ND	20	94	90	110	NV	70	130
Strontium (dissolved)	EMS0019-FEB22	mg/L	0.00002	<0.00002	2	20	102	90	110	106	70	130
Titanium (dissolved)	EMS0019-FEB22	mg/L	0.00005	<0.00005	ND	20	106	90	110	NV	70	130
Thallium (dissolved)	EMS0019-FEB22	mg/L	0.000005	<0.000005	ND	20	94	90	110	94	70	130
Uranium (dissolved)	EMS0019-FEB22	mg/L	0.000002	<0.00002	ND	20	95	90	110	91	70	130
Vanadium (dissolved)	EMS0019-FEB22	mg/L	0.00001	<0.00001	ND	20	103	90	110	112	70	130
Tungsten (dissolved)	EMS0019-FEB22	mg/L	0.00002	<0.00002	ND	20	101	90	110	NV	70	130
Yttrium (dissolved)	EMS0019-FEB22	mg/L	0.00002	<0.00002	ND	20	102	90	110	NV	70	130
Zinc (dissolved)	EMS0019-FEB22	mg/L	0.002	<0.002	ND	20	95	90	110	106	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref	F.
	Reference			Blank		Spike	Recover	ry Limits 6)	Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9375-JAN22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9375-JAN22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	RPD AC (%)			ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0420-JAN22	No unit	0.05	NA	2		100			NA		

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover (9	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0408-JAN22	mg/L	30	<30	0	20	100	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0002-FEB22	as N mg/L	0.5	<0.5	1	10	109	90	110	NV	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0427-JAN22	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

Request for Laboratory Services and CHAIN OF CUSTO Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment	- Lakefield: 185 Concessi	Request for on St., Lakefield, ON KOL	r Laborator 2H0 Phone: 705-65	Request for Laboratory Services and CHAIN , Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www:	and CHAIN	OF CUSTODY gs.com/environment	ODY				^{No} 024262
Received By: 104401000	- London: b5/ Consortium Py) Rece Cust	London: 657 Consortium Court, London, UN, NEE 258 Prone: 519-67-43001 foil: Free: 617-548-6000 Fax: 519-67-4300 Laboratory Information Section - Lab use only Received By (signature): Laboratory Information Section - Lab use only Cooling Agent Present: Yes No Cooling Agent Present: Yes No Cooling Agent Present: Yes No Temperature Upon Receipt (°C)	Laboratory	No Cooling Agent Present: Yes No Temperature Upon Receipt (°C)	Temperature Upon Receipt (°C)_	P C Type			۶		52.921
EPORT INFORMATIC	INVOIC	0	[22160
×à	e as	Information)	Quotation #:		0-001			P.O. #:	stian/ID.		
Address: OH Sonk (1 St.	Contact:		1 10/000			TUR	NAROUND	TURNAROUND TIME (TAT) REQUIRED	JIRED		
Reternorough	Address:			Regular TAT (5-7days)	5-7days)	-		TAT's are qu Samples rece	oted in business da eived after 6pm or o	ays (exclude statuto on weekends: TAT t	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day
` '		12	PLEAS	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	Charges May App SH FEASIBILITY \	oly):	1 Day	ply): 1 Day 2 Days 3 Days 4 Days WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	3 Days 4 Days		
- ne eu	Email:		Specify	Specify Due Date:		*NOTE:	DRINKING (F	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE WITH SGS DRINKING WATER CHAIN OF CUSTODY	SAMPLES FOR HUNKING WATER CH	HAN CONSUMPTI	ON MUST BE SUBMITTED
Condition 1 the base	EGULATIONS					ANALYSIS REQUESTED	REQUE	STED			
O.Reg 153/04 O.Reg 406/19	Other Regulations:	: Sewer By-Law:	y-Law:	M & I	SVOC PCB	PHC	VOC Pest	stOther	(please specify)	SPLP TCLP	
Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine	47/558 (3	S S D D] Sanitary] Storm icipality:		clor			olin ductivit	ice, Dae stats orches	Specify Specify tests tests	
Soil Volume 350m3 >350m3	ODWS Not Reportable *See note	able *See note	1	,SAR⊣ Hg, Cr				e.(COMMENTS.
RECORD OF SITE CONDITION (RSC)				B(HWS),E Suite S-soil onl		X		orm			
SAMPLE IDENTIFICATION	DATE T SAMPLED SAM	TIME # OF SAMPLED BOTTLES	Field Filtered	Metals & Inou incl CrVI, CN, Hg pH, (B(H (CI, Na-water) Full Metals S ICP metals plus B(HWS- ICP Metals or Sb, As, Ba, Be, B, Cd, Cr, Co	PAHs only SVOCs all incl PAHs, ABNs, CPs	F1-F4 + BTEX	all incl BTEX BTEX only Pesticides	Organochlorine or spec Total Colifor AIKalinit Chlorider Ditrite, Si	AIKALINIF Chioriden Nifrite, Si Torbidity Organic nifr Second Second Water Characte		
1 TWI	V127/22 6	\$ 9	1					n	K X		
2											
Δ											2,28
4	-										
5											
6			Page 1								
7											
8	ò.	2 2 3									
9	14 1						-				
10											
11		a san a s									
12									 #		
Sampled By MAME: 1011 100 - 1000	y samples.	Une is ma	intrach 1	field f	illered o	un the	forthe		د ا		
011000		Signature:	MU()	in)		Date:	1111	C (mm/dd/yy)	td/yy)	Pink Copy - Client
Note: Submission of samp	is acknowledgement that you I	have been provided direction	on sample collection/ha	andling and transportation	on of samples. {2} Subm	ission of samples to	SGS is consider	ed authorization for con	npletion of work. Sign	atures may appear on t	this form or be retained on file in
the contract, or in	tive format (e.g. shipping docur http://www.s	nents). {3} Results may be se gs.com/terms_and_conditions	nt by email to an unlimi s.htm. (Printed copies a	ited number of addresse are available upon reque	est.) Attention is drawn	. Fax is available up to the limitation of lia	on request. This ability, indemnific	document is issued by ation and jurisdiction iss	the Company under it sues defined therein.	s General Conditions c	an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA14483-OCT21 R1

11598-001

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS		LABORATORY DETAIL	S
Client	Cambium Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	194 Sophia Street, Peterborough	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, K9H 1E5		
	Phone: 705-742-7900. Fax:		
Contact	Kevin Warner	Telephone	705-652-2143
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	kevin.warner@cambium-inc.com	SGS Reference	CA14483-OCT21
Project	11598-001	Received	10/27/2021
Order Number		Approved	11/02/2021
Samples	Ground Water (1)	Report Number	CA14483-OCT21 R1
		Date Reported	11/02/2021

COMMENTS

Temperature of Sample upon Receipt: 13 Cooling Agent Present:Yes Custody Seal Present: Yes

Chain of Custody Number:023517

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	
QC Summary	
Legend	
Annexes	17

CA14483-OCT21 R1

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

			.	-
PACKAGE: General Chemistry (WAT	TER)		Sample Number	5
			Sample Name	Test Well 2
			Sample Matrix Sample Date	Ground Water 26/10/2021
	Units		Sample Date	
Parameter	Units	RL		Result
General Chemistry				
Alkalinity	mg/L as	2		198
Conductivity	CaCO3 uS/cm	2		1040
Colour	TCU	3		< 3
Turbidity	NTU	0.10		2.32
Dissolved Organic Carbon	mg/L	1		1
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Ammonia+Ammonium (N)	as N mg/L	0.1		0.2
Organic Nitrogen	mg/L	0.5		< 0.5
Total Dissolved Solids	mg/L	30		431
Metals and Inorganics				
Nitrite (as N)	as N mg/L	0.03		< 0.03
Nitrate (as N)	as N mg/L	0.06		0.92
Nitrate + Nitrite (as N)	as N mg/L	0.06		0.92
Sulphate	mg/L	2		26
Fluoride	mg/L	0.06		0.28
Hardness (dissolved)	mg/L as	0.05		366
	CaCO3			
Silver (dissolved)	mg/L	0.00005		< 0.00005
Aluminum (dissolved)	mg/L	0.001		0.011
Arsenic (dissolved)	mg/L	0.0002		0.0008
Barium (dissolved)	mg/L	0.00002		0.266

CA14483-OCT21 R1

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

			.	-
PACKAGE: Metals and Inorganics (WATER)			Sample Number	5
			Sample Name	Test Well 2
			Sample Matrix	Ground Water
			Sample Date	26/10/2021
Parameter	Units	RL		Result
Aetals and Inorganics (continued)				
Beryllium (dissolved)	mg/L	0.00000		< 0.000007
		7		
Boron (dissolved)	mg/L	0.002		0.124
Bismuth (dissolved)	mg/L	0.00001		< 0.00001
Calcium (dissolved)	mg/L	0.01		88.6
Cadmium (dissolved)	mg/L	0.00000		< 0.000003
		3		
Cobalt (dissolved)	mg/L	0.00000		0.000072
Chromium (dissolved)	mg/L	4 0.00008		0.00037
Copper (dissolved)	mg/L	0.0002		< 0.0002
	-	0.0002		0.279
Iron (dissolved)	mg/L			
Potassium (dissolved)	mg/L	0.009		2.74
Lithium (dissolved)	mg/L	0.0001		0.0219
Magnesium (dissolved)	mg/L	0.001		35.1
Manganese (dissolved)	mg/L	0.00001		0.0134
Molybdenum (dissolved)	mg/L	0.00004		0.00227
Sodium (dissolved)	mg/L	0.01		55.5
Nickel (dissolved)	mg/L	0.0001		0.0011
Phosphorus (dissolved)	mg/L	0.003		0.009
Lead (dissolved)	mg/L	0.00009		0.00012
Antimony (dissolved)	mg/L	0.0009		< 0.0009
Selenium (dissolved)		0.00004		0.00009
Selenium (dissolved)	mg/L	0.00004		0.00009

CA14483-OCT21 R1

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

PACKAGE: Metals and Inorganics (W	/ATER)		Sample Number	5
			Sample Name	Test Well 2
			Sample Matrix	Ground Water
			Sample Date	26/10/2021
Parameter	Units	RL		Result
Metals and Inorganics (continued)				
Silicon (dissolved)	mg/L	0.02		7.95
Tin (dissolved)	mg/L	0.00006		0.00037
Strontium (dissolved)	mg/L	0.00002		1.75
Titanium (dissolved)	mg/L	0.00005		0.00082
Thallium (dissolved)	mg/L	0.00000		< 0.000005
		5		
Uranium (dissolved)	mg/L	0.00000		0.000538
		2		
Vanadium (dissolved)	mg/L	0.00001		0.00028
Tungsten (dissolved)	mg/L	0.00002		0.00012
Yttrium (dissolved)	mg/L	0.00002		0.00003
Zinc (dissolved)	mg/L	0.002		0.003
Microbiology		· · ·		
Total Coliform	cfu/100mL	0		5
E. Coli	cfu/100mL	0		0

	CCC				FINAL REPOR	CA14483-OCT21 R1
						Client: Cambium Inc.
						Project: 11598-001
						Project Manager: Kevin Warner
						Samplers: Willem Verduyn
PA	ACKAGE: Other (ORP) (WATER)			Sample Number	5	
				Sample Name	Test Well 2	
				Sample Matrix Sample Date	Ground Water 26/10/2021	
	Parameter	Units	RL		Result	
Ot	her (ORP)					
	рН	No unit	0.05		8.17	
	Chloride	mg/L	1		210	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0608-OCT21	mg/L as CaCO3	2	< 2	0	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	F.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0288-OCT21	as N mg/L	0.1	<0.1	ND	10	101	90	110	97	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5003-NOV21	mg/L	1	<1	19	20	108	80	120	109	75	125
Sulphate	DIO5003-NOV21	mg/L	2	<2	ND	20	89	80	120	88	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Re	F.
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0613-OCT21	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0613-OCT21	mg/L	0.03	<0.03	ND	20	99	90	110	93	75	125
Nitrate (as N)	DIO0613-OCT21	mg/L	0.06	<0.06	ND	20	101	90	110	100	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank		M	latrix Spike / Re	F.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0300-OCT21	mg/L	1	<1	1	20	103	90	110	NV	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0624-OCT21	TCU	3	< 3	ND	10	100	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0608-OCT21	uS/cm	2	2	0	20	98	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	Matrix Spike / Ref.	
	Reference		Blank	Blank	RPD		Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0623-OCT21	mg/L	0.06	<0.06	5	10	100	90	110	96	75	125

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	4
	Reference			Blank	RPD	AC	Spike Recovery		ry Limits 6)	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0194-OCT21	mg/L	0.00005	<0.00005	ND	20	98	90	110	104	70	130
Aluminum (dissolved)	EMS0194-OCT21	mg/L	0.001	<0.001	ND	20	104	90	110	115	70	130
Arsenic (dissolved)	EMS0194-OCT21	mg/L	0.0002	<0.0002	ND	20	106	90	110	118	70	130
Barium (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	2	20	101	90	110	87	70	130
Beryllium (dissolved)	EMS0194-OCT21	mg/L	0.000007	<0.00007	ND	20	93	90	110	99	70	130
Boron (dissolved)	EMS0194-OCT21	mg/L	0.002	<0.002	3	20	97	90	110	99	70	130
Bismuth (dissolved)	EMS0194-OCT21	mg/L	0.00001	<0.00001	ND	20	100	90	110	90	70	130
Calcium (dissolved)	EMS0194-OCT21	mg/L	0.01	<0.01	8	20	102	90	110	120	70	130
Cadmium (dissolved)	EMS0194-OCT21	mg/L	0.000003	<0.000003	ND	20	102	90	110	102	70	130
Cobalt (dissolved)	EMS0194-OCT21	mg/L	0.000004	<0.000004	ND	20	100	90	110	107	70	130
Chromium (dissolved)	EMS0194-OCT21	mg/L	0.00008	<0.00008	5	20	92	90	110	95	70	130
Copper (dissolved)	EMS0194-OCT21	mg/L	0.0002	<0.0002	ND	20	97	90	110	125	70	130
Iron (dissolved)	EMS0194-OCT21	mg/L	0.007	<0.007	0	20	108	90	110	100	70	130
Potassium (dissolved)	EMS0194-OCT21	mg/L	0.009	<0.009	ND	20	104	90	110	98	70	130
Lithium (dissolved)	EMS0194-OCT21	mg/L	0.0001	<0.0001	ND	20	101	90	110	96	70	130
Magnesium (dissolved)	EMS0194-OCT21	mg/L	0.001	<0.001	19	20	105	90	110	89	70	130
Manganese (dissolved)	EMS0194-OCT21	mg/L	0.00001	<0.00001	ND	20	102	90	110	102	70	130
Molybdenum (dissolved)	EMS0194-OCT21	mg/L	0.00004	<0.00004	ND	20	101	90	110	105	70	130
Sodium (dissolved)	EMS0194-OCT21	mg/L	0.01	<0.01	ND	20	106	90	110	114	70	130
Nickel (dissolved)	EMS0194-OCT21	mg/L	0.0001	<0.0001	ND	20	96	90	110	92	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery	Recover (9	-
					(70)	(%)	Low	High	(%)	Low	High	
Lead (dissolved)	EMS0194-OCT21	mg/L	0.00009	<0.00001	ND	20	102	90	110	97	70	130
Phosphorus (dissolved)	EMS0194-OCT21	mg/L	0.003	<0.003	ND	20	108	90	110	NV	70	130
Antimony (dissolved)	EMS0194-OCT21	mg/L	0.0009	<0.0009	ND	20	108	90	110	98	70	130
Selenium (dissolved)	EMS0194-OCT21	mg/L	0.00004	<0.00004	ND	20	95	90	110	75	70	130
Silicon (dissolved)	EMS0194-OCT21	mg/L	0.02	<0.02	0	20	109	90	110	NV	70	130
Tin (dissolved)	EMS0194-OCT21	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Strontium (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	10	20	96	90	110	82	70	130
Titanium (dissolved)	EMS0194-OCT21	mg/L	0.00005	<0.00005	ND	20	98	90	110	NV	70	130
Thallium (dissolved)	EMS0194-OCT21	mg/L	0.000005	<0.000005	ND	20	103	90	110	83	70	130
Uranium (dissolved)	EMS0194-OCT21	mg/L	0.000002	<0.000002	0	20	99	90	110	98	70	130
Vanadium (dissolved)	EMS0194-OCT21	mg/L	0.00001	<0.00001	ND	20	99	90	110	119	70	130
Tungsten (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	ND	20	97	90	110	NV	70	130
Yttrium (dissolved)	EMS0194-OCT21	mg/L	0.00002	<0.00002	ND	20	103	90	110	NV	70	130
Zinc (dissolved)	EMS0194-OCT21	mg/L	0.002	<0.002	ND	20	95	90	110	78	70	130

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	•		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (१	ry Limits 6)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9451-OCT21	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9451-OCT21	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	Duplicate RPD AC (%)		S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD				Recovery Limits (%)		Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0608-OCT21	No unit	0.05	NA	0		100			NA		

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover (9	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0637-OCT21	mg/L	30	<30	11	20	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	RPD AC Spike		S/Spike Blank		M	latrix Spike / Ref	ke / Ref.	
	Reference			Blank	RPD				ery Limits %)	Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Kjeldahl Nitrogen	SKA0290-OCT21	as N mg/L	0.5	<0.5	8	10	109	90	110	76	75	125	

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Spike Recover		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Turbidity	EWL0634-OCT21	NTU	0.10	< 0.10	1	10	99	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

- London: GS7 Consortum Court, London, Lori Nez Earlori Lendon, Oxi, Nez Earlori Lendon, Castody Seal Intact: Ves I No Custody Seal Intact: Ves I	formation Section - Lab use only Cooling Agent Present: Yes 日本の コ Trope Ce Temperature Upon Receipt (*C) ろ、12、13 Temperature Upon Receipt (*C) ろ、12、13 Temperature Upon Receipt (*C) ろ、12、13 Temperature Upon Receipt (*C) ろ、12、13 Temperature Upon Receipt (*C) ろ、10、15 Temperature Upon Receipt (*C) ろ、15 Temperature
I. P.L. (minday) Cacened By (signature) ORT INFORMATION Castody Seal Inter: ORT INFORMATION Castody Seal Inter: ORT INFORMATION MUOCCE INFORMATION ORT INFORMATION MUOCCE INFORMATION OPT INFORMATION MUOCCE INFORMATION Information MUOCCE INFORMATION Information Information Information Information Information MUOC Information Information Information Informatintion Information <td< td=""><td>Cooling Agent Present: Yes Two Type CC Temperature Upon Receipt (°C) 3. J2. J2.</td></td<>	Cooling Agent Present: Yes Two Type CC Temperature Upon Receipt (°C) 3. J2. J2.
Processment INVOICE INFORMATION EXPERTINECRANATION MODICE INFORMATION March March Mark March Mark Mark Mark	HEAS- MIL
Combition Activity Comparity Activity User (new) Activity User (new) Order Address: Address: Phone: Address: Contact:	HEAS-ON
ULUTUREX Company: Repuirt AFRext Contract: Phone: Phone: Phone: Phone: Deriver Sail Texture: Email: Email: Email: Enail: Email: Address: Enail: Deriver Sail Texture: Enail: Appx. Other Regulations: Appx. Other Regulations: Saintery Enail: Appx. Other Regulations: Saintery Enail: Appx. Other Regulations: Saintery Mission Mission Mission Saintery Enail: Appx. Other Regulations: Saintery Mission Appx. Other Regulations: Saintery Server By-Law: Saintery Enail: Appx. Other Regulations: Saintery Server By-Law: Saintery Server By-Law: <td></td>	
I: Q. L. Top W.O. C. N.W. Address: Address: CUT b.O.C. N.W. A. Address: RevT.N. U.S. R. N. Address: Phone: RestPark Soll Texture: Phone: App.x. Other: Mish Other: Mish Other: Mish Phone: App.x. Other: Mish Phone: Mish <td>TURNAROUND TIME</td>	TURNAROUND TIME
Address: Address: Phone: Phone: Phone: Email: Park Soil Texture: Park Soil Texture: Park Soil Texture: Park Soil Texture: Park Soil Texture: Park Soil Texture: Polone: Oobser Outher ModeliunFine Outher ModeliunFine Onbie Constance Outher ModeliunFine Proconstation Sewer By-Law: Park Soil Texture: Proconstations: Park Soil Texture: Proconstations: Park Soil Texture: ModeliunFine Proconstation Oobser Proconstation Sewer By-Law: Proconstation Proconstation Proconstation Proconstation Proconstation Proconstation Proconstation Proconstation <td>TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day</td>	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day
Kevtin, Ustrandia Phone: Kevtin, Ustrandia Phone: Cubic Min Counce Reserver & Soil return: Bag 337/558 (3 bay min TA1) Reserver & Soil return: Phone: Reserver & Soil return: Sower By-Law: Reserver & Soil return: Phone: Reserver & Soil return: Sower By-Law: Reserver & Soil return: Sower By-Law: Reserver & Phone: Mick Appx. Somer By-Law: Reserver & Soil return: Sower By-Law: Reserver & Mine: Mick Appx. Somer By-Law: Reserver & Mine: Mick Reserver & Appx. Somer By-Law: Reserver & Appx. Mick Reserver & Appx. Mick Reserver & Appx. Mick Reserver & Appr. Sample: Reserver & Appx. Mick Reserver & Appx. Reserver & Appr. <tr< td=""><td>RUSH TAT (Additional Charges May Apply):</td></tr<>	RUSH TAT (Additional Charges May Apply):
PPAHS only PPAHS only Mainter Conter Regulations: 15304 Other Regulations: 15304 Other: 15404 Other: 15504 Other: 15504 Other: 15504 Other: 16504 Other: 16504 Other: 1741 Sammer 1741 Samer 1741 Samer </td <td>Due Date: WITH SCIENCIES OF AND SCIENCE OF AND SCIE</td>	Due Date: WITH SCIENCIES OF AND SCIENCE OF AND SCIE
PAHs only PAHs only Mediant Table 15304 Other Regulations: 9b/Hs only 9b/Hs only 15304 Other Regulations: 9b/Hs only 9b/Hs only 15304 Other Regulations: 9b/Hs only 9b/Hs only 15304 Other Regulations: 9b/Hs only 9b/Hs only 9b/Hs only 15304 Other Regulations: 9b/Hs only 9b/Hs only 9b/Hs only 9b/Hs 15304 Other Regulations: 0000NS Not Reportable Suffice 0000NS Not Reportable Suffice 9b/Hs 9b/Hs 15304 Other Regulations: 000NS Not Reportable Suffice 00NS Not Reportable Suffice<	ANAL
15304 PAHs only 15304 Oxeg 40010 15304 Oxeg 40010 1693 Same Solution 1793 Same Solution 1794 Same Solution 1794 Same Solution 1794 Same Solution 1794 Same Solution 171 Same Solution 172 S	<u>& I</u>
Soli Volume Controlina	
AMPLE DETTING DATE SAMPLED	ui (yino juge 11y 12 11 11 11 11 11 11 11 11 11 11 11 11
Test Well 2 Ic/26/21 3:41 7 GW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Full Metals on Growals plus Hill Metals on Sa, As Ba, Be, B. G. G. G. G. G. D. CP Metals on PAHs only Saver Use: Saver Saver Use: Saver Use: Sa
6 7 7 8 9 9 10 10	
7 8 9 9 10 9	
12	
Observations/Comments/Special Instructions	
sampled By (NAME): (N' (18, W) UC BUYN Signature: NUL- UCM	M Date: 10 1 2010 (mm/dd/yy)
Relinquished by (NAME): 17/11/2011 10 CAUUN Signature: JUUNN ANAN	1, 11/2, 11/2, 1/2, 1/2, 1/2, 1/2, 1/2,

CA15171-FEB22 R1

11598-001

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Cambium Inc.	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	194 Sophia Street, Peterborough	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, K9H 1E5		
	Phone: 705-742-7900. Fax:		
Contact	Kevin Warner	Telephone	705-652-2000
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	kevin.warner@cambium-inc.com	SGS Reference	CA15171-FEB22
Project	11598-001	Received	02/09/2022
Order Number		Approved	02/16/2022
Samples	Ground Water (1)	Report Number	CA15171-FEB22 R1
		Date Reported	02/16/2022

COMMENTS

Temperature of Sample upon Receipt: 6 degrees C Cooling Agent Present: No Custody Seal Present: No

Chain of Custody Number: 024536

SIGNATORIES

Maarit Wolfe, Hon.B.Sc

Live

TABLE OF CONTENTS

First Page	1
Index	2
Results	
QC Summary	6-11
Legend	
Annexes	

SGS

Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner Samplers: Willem Verduyn

			Sample Number	5
IATRIX: WATER				TW2
			Sample Name Sample Matrix	Ground Water
			Sample Matrix Sample Date	09/02/2022
Parameter	Units	RL		Result
General Chemistry				
Alkalinity	mg/L as CaCO3	2		235
Conductivity	uS/cm	2		1040
Colour	TCU	3		< 3
Turbidity	NTU	0.10		2.05
Dissolved Organic Carbon	mg/L	1		1
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Ammonia+Ammonium (N)	as N mg/L	0.1		0.2
Organic Nitrogen	mg/L	0.5		< 0.5
Total Dissolved Solids	mg/L	30		583
letals and Inorganics				
Nitrite (as N)	as N mg/L	0.03		< 0.03
Nitrate (as N)	as N mg/L	0.06		0.65
Nitrate + Nitrite (as N)	as N mg/L	0.06		0.65
Sulphate	mg/L	2		34
Fluoride	mg/L	0.06		0.25
Hardness (dissolved)	mg/L as CaCO3	0.05		407
Silver (dissolved)	mg/L	0.00005		< 0.00005
Aluminum (dissolved)	mg/L	0.001		0.002
Arsenic (dissolved)	mg/L	0.0002		0.0003
Barium (dissolved)	mg/L	0.00002		0.251
Beryllium (dissolved)	mg/L	0.000007		0.00008
Boron (dissolved)	mg/L	0.002		0.141

Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner Samplers: Willem Verduyn

IATRIX: WATER			Sample Number	5
			Sample Name	TW2
			Sample Matrix	Ground Water
			Sample Date	09/02/2022
Parameter	Units	RL		Result
letals and Inorganics (continued)				
Bismuth (dissolved)	mg/L	0.00001		< 0.00001
Calcium (dissolved)	mg/L	0.01		111
Cadmium (dissolved)	mg/L	0.000003		0.000005
Cobalt (dissolved)	mg/L	0.000004		0.000092
Chromium (dissolved)	mg/L	0.00008		0.00011
Copper (dissolved)	mg/L	0.0002		0.0004
Iron (dissolved)	mg/L	0.007		0.320
Potassium (dissolved)	mg/L	0.009		3.34
Lithium (dissolved)	mg/L	0.0001		0.0202
Magnesium (dissolved)	mg/L	0.001		31.3
Manganese (dissolved)	mg/L	0.00001		0.0164
Molybdenum (dissolved)	mg/L	0.00004		0.00154
Sodium (dissolved)	mg/L	0.01		53.0
Nickel (dissolved)	mg/L	0.0001		0.0010
Phosphorus (dissolved)	mg/L	0.003		0.006
Lead (dissolved)	mg/L	0.00009		0.00011
Antimony (dissolved)	mg/L	0.0009		< 0.0009
Selenium (dissolved)	mg/L	0.00004		0.00010
Silicon (dissolved)	mg/L	0.02		10.3
Tin (dissolved)	mg/L	0.00006		< 0.00006
Strontium (dissolved)	mg/L	0.00002		2.14
Titanium (dissolved)	mg/L	0.00005		0.00018

Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner Samplers: Willem Verduyn

MATRIX: WATER			Sample Number	5
			Sample Name	TW2
			Sample Matrix	Ground Water
			Sample Date	09/02/2022
Parameter	Units	RL		Result
Metals and Inorganics (continued)				
Thallium (dissolved)	mg/L	0.000005		0.000005
Uranium (dissolved)	mg/L	0.000002		0.000719
Vanadium (dissolved)	mg/L	0.00001		0.00023
Tungsten (dissolved)	mg/L	0.00002		0.00010
Yttrium (dissolved)	mg/L	0.00002		0.00002
Zinc (dissolved)	mg/L	0.002		0.003
Microbiology				
Total Coliform	cfu/100mL	0		4
E. Coli	cfu/100mL	0		<2↑
Other (ORP)				
pH	No unit	0.05		8.37
Chloride	mg/L	1		210

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Alkalinity	EWL0203-FEB22	mg/L as CaCO3	2	< 2	0	20	102	80	120	NA			

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	RL Method Duplicate LCS/Spit		S/Spike Blank		Matrix Spike / Ref.				
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
							Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0099-FEB22	as N mg/L	0.1	<0.1	ND	10	99	90	110	88	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
					RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5035-FEB22	mg/L	1	<1	ND	20	108	80	120	113	75	125
Sulphate	DIO5035-FEB22	mg/L	2	<2	ND	20	110	80	120	103	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Method Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Nitrate + Nitrite (as N)	DIO0202-FEB22	mg/L	0.06	<0.06	NA		NA			NA			
Nitrite (as N)	DIO0202-FEB22	mg/L	0.03	<0.03	ND	20	100	90	110	103	75	125	
Nitrate (as N)	DIO0202-FEB22	mg/L	0.06	<0.06	ND	20	103	90	110	102	75	125	

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch Reference	Units	s RL	RL Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
					ank RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0094-FEB22	mg/L	1	<1	3	20	96	90	110	100	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits	Spike	Recover	y Limits
						(%)	Recovery	()	%)	Recovery	(୨	6)
						(70)	(%)	Low	High	(%)	Low	High
Colour	EWL0178-FEB22	TCU	3	< 3	1	10	90	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0203-FEB22	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0166-FEB22	mg/L	0.06	<0.06	ND	10	94	90	110	101	75	125

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-IENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		M	atrix Spike / Ref	-
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover (9	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9161-FEB22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9161-FEB22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits (%)	Spike Recovery	Recover (۹	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0203-FEB22	No unit	0.05	NA	0		101			NA		

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-IENVIEWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	i.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0168-FEB22	mg/L	30	<30	0	20				NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover (9	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0089-FEB22	as N mg/L	0.5	<0.5	0	10	102	90	110	91	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0162-FEB22	NTU	0.10	< 0.10	1	10	100	90	110	NA		

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

	The second by (signaline) T	Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 70	Kequest for Laboratory Services and CHAIN OF COSI OUT , Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment	COLY 361 VICES 4110 UTAIN UF UC 31 0 5-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment	Web: www.sgs.co	m/environment	5				024536
	Received By (signature) Monoton (signature) Initiation Control Sale Present: Yes No Initiation Control Sale Present: Yes No Initiation Control Sale Present: Yes No Initiation Initiation Control Sale Present: Yes No Initiation Initiation Initiation Control Present: Yes No Initiation Initiation Initiation Initiation Control Present: Yes No Initiation Initiation Initiation Initiation Initiation Initiation Initiation Initiation Initiation Initinitiation Initiation	- London: 657 Consortium Court, London, ON, NGE 2	S8 Phone: 519-672-4500 1	foll Free: 877-848	8060 Fax: 519-67	2-0361	The second s		State of the second		Page of
Multiple Cardio Statistics No. Constrained And the second of the second o	Mondays Cuasoly Said Present Yes No Could Again Transmitt No Respondentiation Respondentiation Notation Said Present Yes No No Respondentiation Respondentiation No Constant Said Present Yes No Respondentiation Respondentiation No No Respondentiation Proprie Respondentiation No No Respondentiation Proprie Respondentiation No No Respondentiation Proprie Respondentiation No No Respondentiation Rest Connectification No No Respondentiation Rest Proprie No Respondentiation No Rest Proprie No Respondentiation No Rest No Rest No Respondentiation Rest No Respondentiation Respondentiation No Rest No Respondentiation No Respondentiation Rest No Respondentiation No Respondentiation Rest No Respondentiation No Respondentiation Rest No Respondentiatin No Respondentiation </td <td>Mul Darring Received By (signature):</td> <td>Car y</td> <td></td> <td>- Labourse official to the second sec</td> <td>- [2</td> <td></td> <td></td> <td></td> <td>, , ,</td> <td></td>	Mul Darring Received By (signature):	Car y		- Labourse official to the second sec	- [2				, , ,	
MUNICIDE REFORMATION POID IS POID IS <td>Invoice intercentation Invoice intercentation Invoice intercentation Export information Company. Company. Prome. Company. Prome. Company. Prome. Contract. Prome. Prome. Prome. Prom.</td> <td>ULION DU (mm/dd/yy) Custody Seal Present: (パー、min) Custody Seal Intact:</td> <td></td> <td>ooling Agent Prese emperature Upon I</td> <td>Receipt (°C)</td> <td></td> <td></td> <td></td> <td>LAB LI</td> <td></td> <td>15771 Febr</td>	Invoice intercentation Invoice intercentation Invoice intercentation Export information Company. Company. Prome. Company. Prome. Company. Prome. Contract. Prome. Prome. Prome. Prom.	ULION DU (mm/dd/yy) Custody Seal Present: (パー、min) Custody Seal Intact:		ooling Agent Prese emperature Upon I	Receipt (°C)				LAB LI		15771 Febr
Allower P.O. F. Another Constant. Another Constant. Another Another Another Another </td <td>Image: State as Report Information) Image: State as Report Information) December #: 11 S.C. P 0.01 Prome: Prome: Prome: Prome: Prom: Prome: Prome: Prome: Prom: Prome: Prome: Prome: Prom: Prome:</td> <td></td>	Image: State as Report Information) Image: State as Report Information) December #: 11 S.C. P 0.01 Prome: Prome: Prome: Prome: Prom: Prome: Prome: Prome: Prom: Prome: Prome: Prome: Prom: Prome:										
Comparie: Comparie: <thcomparie:< th=""> <thcomparie:< th=""> <thc< td=""><td>Company. Company. Address. Madress. Phone: Phone: Phone: Phone:</td><td>- 1</td><td></td><td>\$p</td><td>100</td><td></td><td></td><td>P.O.#:</td><td></td><td></td><td></td></thc<></thcomparie:<></thcomparie:<>	Company. Company. Address. Madress. Phone: Phone:	- 1		\$p	100			P.O.#:			
ADVICE Constrained Notestime Constrained MATRIE Market Market Market Market Market Market MATRIE Market Market M	Applicit Christer Onnect: Option: Address: Option: Plone: Plone: Plone: Option: Plone: Plone: Plone Plone: Plone:<	Y	Project #: 1	1	100-			Site Location/I	ID:		
Mark Autors Table and the second and t	Address. Address. Address. Drop (RE Prone. Prone. Reginar TAT (6-7 days) Drop (RE Prone. Prone. Real Intervented and the solution of the regulations: Drop (RE Prone. Prone. Real Intervented and the solution of the regulations: Drop (RE Prone. Prone. Real Intervented and the solution of the regulations: Refer & Sol (Tradue) Drop and the solution of the regulations: Prove of the regulations: Prove of the regulations: Refer & Sol (Tradue) Drop and the sol (Tradue) Prove of the regulations: Prove of the regulations: Refer & Sol (Tradue) Drop and the sol (Tradue) Prove of the regulations: Prove of the regulations: Refer & Sol (Tradue) Drop and the sol (Tradue) Sol (Tradue) Prove of the regulations: Refer & Sol (Tradue) Drop and the sol (Tradue) Main A Sol (Tradue) Prove of the regulation in A Sol (Tradue) Drop and the sol (Tradue) Main A Main A Main A Sol (Tradue) Drop and the sol (Tradue) Main A Main A Main A Sol (Tradue)	Sonnia Street			•	TURN	AROUND TIN	IE (TAT) REQUIREE	0		
OTT RET_IN Date	Drift Ref Pione: Drift Ref Pione: Drift Ref Pione: Processed addrift of the mail: Research and the regulations: Research and the regulations: Processed addrift of the mail: Research and the regulations: Processed addrift of the mail: Research and the regulations: Processed addrift of the mail: Research and the regulations: Processed addrift of the mail: Research and the regulations: Processed addrift of the mail: Applie: Order Down and the regulations: Processed addrift of the mail of the regulations: Applie: Order Down and the regulations: Processed addrift of the regulations: Applie: Order Down and the regulations: Source addrift of the regulations: Applie: Order Down and the regulations: Source addrift of the regulations: Applie: Order Down and the regulations: Source addrift of the regulations: Applie: Order Down and the regulations: Source addrift of the regulations: Applie: Order Down and the regulations: Source addrift of the regulations: Down and the regulations: Source addrift of the regulations: Down and the regulations	191	Regu	ular TAT (5-7da)	(s			TAT's are quoted in Samples received a	n business days i after 6pm or on v	exclude statutor eekends: TAT t	ry holidays & weekends). begins next business day
Protection Protection Protection Contraction Protection Contraction Reconstruction Section beam Protection Contraction Protectin Contraction	Picker Phone: - i.M C.S.M. Email: - i.M C.S.M. Email: - i.M C.S.M. Email: - i.M S.S.M C.S.M. Email: - i.M C.S.M C.S.M Marker - i.M S.S.M S.M S		RUSH TAT (A	dditional Charg	es May Apply):	Ē	Day 🗌 2 🛛	ays 🔲 3 Days 🗌]4 Days		
	Int. Co.(N) Endit Specify Due Date: Int. Co.(N) Internations: Internations: Internations: Int. Constraine: Int. No. Internations: Internations: Int. Constraine: Int. Constraine: Internations: Int. Int. Constraine: <td>K</td> <td>PLEASE CON</td> <td>FIRM RUSH FE</td> <td>ASIBILITY WIT</td> <td>H SGS REPR</td> <td>ESENTATIV</td> <td>E PRIOR TO SUBMI</td> <td></td> <td>N CONCLIMENT</td> <td>ON MUST BE SUBMITTED</td>	K	PLEASE CON	FIRM RUSH FE	ASIBILITY WIT	H SGS REPR	ESENTATIV	E PRIOR TO SUBMI		N CONCLIMENT	ON MUST BE SUBMITTED
НЕСОLUCIONS RECOLUCIONS ANALYSIS REQUESTED Image: Sel Taking and E al Taking and Taking and Taking and Taking and Taking and Taking and Taking a	REGULATIONS Recurrations The Regulations: The Regulations: AMALYSIS REQUESTED The Regulations: The Regulations: The Regulations: AMALYSIS REQUESTED The Regulations: The Regulations: The Regulations: AMALYSIS REQUESTED The Total Total The Regulations: The Regulations: AMALYSIS REQUESTED The Total Total The Regulations: The Regulations: AMALYSIS REQUESTED The Total Total The Regulations: The Regulations: AMALYSIS REQUESTED The Total Total The Regulations: AMALYSIS REQUESTED AMALYSIS REQUESTED The Total Total The Regulations: AMALYSIS REQUESTED AMALYSIS REQUESTED The Total	Cool-00	Specify Due D	ate:				WITH SGS DRINKING	G WATER CHAIL		
ddfi1s Other Regulation: Street By Law M&I Street By Law	406/19 Other Regulations: Severe By-Law: Molecanolisity Molecanolisity Severe By-Law: Molecanolisity Severe By-Law: Molecanolisity Molecanolisity Molecanolisity Molecanolisity Molecanolisity No Svool PHC VCO PHC <td></td> <td></td> <td></td> <td>AN</td> <td>ALYSIS</td> <td>REQUES</td> <td>TED</td> <td></td> <td></td> <td></td>				AN	ALYSIS	REQUES	TED			
Image: Solution (Ministree (Solution (Ministree	Itue:	Other Regulations:	W		PCB	10768		Other (pleas		SPLP TCLP	
Вали Полование	Bree PPMGO MMER dimmFine CCOME Other: MisA Other MisA	Res/Park Soil Texture: Reg 347/558 (3 Day min TAT)	nitary					C			
Валинисти <	Balance Balance Miss Miss Miss </td <td>Ind/Com Coarse PWQO MMER Multimer Comment</td> <td></td> <td></td> <td>lor 🗌</td> <td></td> <td></td> <td>nor</td> <td></td> <td></td> <td></td>	Ind/Com Coarse PWQO MMER Multimer Comment			lor 🗌			nor			
Bare Construction Second Sec	BATE DUMS Soci (PSC) PAHS only 0N (RSC) YES NO 0N (RSC) YES SAMPLED 0N (RSC) NO NO 0N (RSC) YES SAMPLED 0N (RSC) SAMPLED SamPLED 0N (RSC) SAMPLED MATRIX 0N (RSC) SamPLED SamPLED 0N (RSC) SamPLED				Aroc			9			
DATE SAMPLED BOATE SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED	DATE TIME DATE TIME SamPLED SamPLED SamPLED SamPLED <td>ORD OF SITE CONDITION (RSC)</td> <td>s,cs,s,(s</td> <td></td> <td></td> <td></td> <td>other</td> <td>two</td> <td>pəpu</td> <td></td> <td>COMMENTS:</td>	ORD OF SITE CONDITION (RSC)	s,cs,s,(s				other	two	pəpu		COMMENTS:
DATE AMARK DATE DATE Image #0	DATE TIME # OF SAMPLED BOTTLES SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED BOTTLES MATRIX MORALED SAMPLED BOTTLES MATRIX MORALED SAMPLED BOTTLES MATRIX MORALES MATRIX MORALES SAMPLED SAM		мн) 516	۲u	ls		ecity	N	etx∃	0	
Swire Swire <th< td=""><td>SamPLED SamPLED BOTTLES MAIRIX SamPLED SAMPLED BOTTLES MAIRIX 2/9/222 13:05 8 GW N Netals 00 Netals 10 Net</td><td>DATE TIME # OF</td><td>beređ oni & ^{8).Hq gH}</td><td>o 2 6) 0,10,60,6</td><td>toT</td><td>λju</td><td>səp _{Jul}</td><td>WO</td><td>haract</td><td></td><td></td></th<>	SamPLED SamPLED BOTTLES MAIRIX SamPLED SAMPLED BOTTLES MAIRIX 2/9/222 13:05 8 GW N Netals 00 Netals 10 Net	DATE TIME # OF	beređ oni & ^{8).Hq gH}	o 2 6) 0,10,60,6	toT	λju	səp _{Jul}	WO	haract		
$\frac{1}{2/9/22} 3:05 S GW N = 38 \ cm^2 C S C S C S S S S S$	$\frac{1}{2/9/22} = \frac{1}{3:0S} \frac{1}{8} \frac{1}{6} \frac{1}{8} $	SAMPLED SAMPLED BOTTLES	eld Fi etals ^{101, cu}	эМ 9 .ө8,в8,еА	sac	DCs BTEX BTEX BTEX	o X3T Notici	ود (ecify pkg:		
I. i. HIV conduct the first of the first	li, Alkalinity, Al, conductivity, chloride, nitrike	19122 13:05 X		as DI	Ы	A J	в В	s X	M ds		
Iii HIKALinityiAH, conductivityichler ide. nitrite, salabiativ, colouc turb idity. fluctide, hoc. colous	li, Alkalinity, OH, conductivity, chloride, nitrike,	}									
Image: Market and Second Se	li, HValinity, OH, conductivity, chloride, nitrike			-					-		
li, Alkalini Fyreki conductivi tyrchleride, nitrike, sulphatv.coloury Furbidi tyrfluori de, DOU, crigathi LN Stantas: 2022, 00172, contrata	li, Alkalinity, 24, conductivity, chloride, nitrate, nitrike										
li Alkoli ili fy pH conducti vi fy chileri de ni fri fle sujoh chu colour furbi di fy fluori de hou argani LN	li, HValinity, OH, conductivity, chloride, nitrate, nitrike										
li Alkalini Fyroti conductivity chloride, nitrite, salphativ, calcur Furbi di tyr fluoride, DCU arganic M	li, HKalinity, OH, conductivity, chloride, nitrate, nitrike										
li HValinity, pH conductivity, chloride, nitrate, nitrite, sulphoth, calour turb i di Hys Fluoride, Dau again N Nav du Yan Signature: 20, 22 (modely) Signature: 20, 22 (modely)	li, Alkalini'ty, OH, conductivity, chloride, nitrate, nitrike										
li HWalinity, pH, canductivity, chloride, nitrite, salphoth, calour turb i dity. fluoride, Dau aganic N Signature: 2022, 04, 72, maddiy)	li, HKalinity, OH, conductivity, chloride, nitrate, nitrike										
li HKalinity, pH, conductivity, chloride, nitrite, salphath, calour turbidity, fluoride, ba, addivi	li, HKalinity, OH, conductivity, chloride, nitrate, nitrike,										
11, HKalinity, pH, conductivity, chloride, nitrite, sulphoth, calour turbidity, fluoride, bou, again N Nardinity, pH, conductivity, chlore i de la conductivity, calour turbidity, fluoride, bou, again N	li, Alkalini'ty, OH, conductivity, chloride, nitrate, nitrike,										
li, HKalinity, DH, conductivity, chloride, nitrite, subhatr, calour turbidity, fluoride, Da, aganic N Nar dugy Signature: allee en ano anis 02,09,22 (muddy)	Ii, HKalinity, OH, conductivity, chloride, nitrate, nitrike,										
11, HKalinity, pH, conductivity, chleride, nitrate, nitrite, salphoth, calour turbidity, fluoride, bou, again N Nardury, signature: and ee en an anno 02,00,72 (muddy)	11, HVclinity, DH, conductivity, chloride, nitrate, nitrike,										
11, HIVOLINITY, DH, conductivity, chloride, nitrate, nitrite, salphoth, colour, turbidity, fluoride, Dou, organic N Nav duty signature: 2010, 22 (muddy)	ii, HKalinity, OH, conductivity, chloride, nitrate, nitrike,										mordness.
NUGUY Signature: Uller In India 02,00,22 (muldiv)	VIN Signature: 11/00 20 AD			-		, colour	turbic	ity, fluoride	e, Dou of	9 Chic N	metals TOS,
111/19 to Use Oly 22 (multitude)		1/	5	the	5		Date: O	21,00,22		2	Pink Copy - Client
	Relinquished by (NAME): [N 1/18, 60 1/2/ N Signature: 10, 200 Signature: 10, 200	13	Cree .	Chr			Date: 02	2,001-	2 (mm/dd/yy)	у)	Yellow & White Copy - SGS

in the second

CA14499-OCT21 R1

11598-001

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Cambium Inc.	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	194 Sophia Street, Peterborough	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, K9H 1E5		
	Phone: 705-742-7900. Fax:		
Contact	Kevin Warner	Telephone	705-652-2000
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	kevin.warner@cambium-inc.com	SGS Reference	CA14499-OCT21
Project	11598-001	Received	10/27/2021
Order Number		Approved	11/03/2021
Samples	Ground Water (1)	Report Number	CA14499-OCT21 R1
		Date Reported	11/03/2021

COMMENTS

Temperature of Sample upon Receipt: 11 degrees C Cooling Agent Present: Yes Custody Seal Present: No

Chain of Custody Number: 023158

SIGNATORIES

Maarit Wolfe, Hon.B.Sc

Luveye

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
QC Summary	
Legend	16
Annexes	17

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willem Verduyn

ACKAGE: - General Chemistry	(WATER)		Sample Number	5
•	· · · ·		Sample Name	Test Well 3
			Sample Matrix	Ground Water
			Sample Date	27/10/2021
Parameter	Units	RL		Result
General Chemistry				
Alkalinity	mg/L as	2		235
	CaCO3			
Conductivity	uS/cm	2		1220
Colour	TCU	3		< 3
Turbidity	NTU	0.10		34.6
Dissolved Organic Carbon	mg/L	1		2
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Ammonia+Ammonium (N)	as N mg/L	0.1		0.2
Organic Nitrogen	mg/L	0.5		< 0.5
Total Dissolved Solids	mg/L	30		674

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willem Verduyn

			Osmala Number	F
ACKAGE: - Metals and Inorganics	s (WATER)		Sample Number	5
			Sample Name	Test Well 3
			Sample Matrix	Ground Water
			Sample Date	27/10/2021
Parameter	Units	RL		Result
etals and Inorganics				
Nitrite (as N)	as N mg/L	0.03		< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06
Nitrate + Nitrite (as N)	as N mg/L	0.06		< 0.06
Sulphate	mg/L	2		35
Fluoride	mg/L	0.06		0.24
Hardness (dissolved)	mg/L as	0.05		337
	CaCO3			
Silver (dissolved)	mg/L	0.00005		< 0.00005
Aluminum (dissolved)	mg/L	0.001		0.001
Arsenic (dissolved)	mg/L	0.0002		< 0.0002
Barium (dissolved)	mg/L	0.00002		0.316
Beryllium (dissolved)	mg/L	0.00000		< 0.000007
		7		
Boron (dissolved)	mg/L	0.002		0.096
Bismuth (dissolved)	mg/L	0.00001		< 0.00001
Calcium (dissolved)	mg/L	0.01		109
Cadmium (dissolved)	mg/L	0.00000		< 0.000003
		3		
Cobalt (dissolved)	mg/L	0.00000		0.000056
		4		
Chromium (dissolved)	mg/L	0.00008		< 0.00008
Copper (dissolved)	mg/L	0.0002		0.0004
Iron (dissolved)	mg/L	0.007		< 0.007
Potassium (dissolved)	mg/L	0.009		3.40

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willem Verduyn

			Sample Number	5
ACKAGE: - Metals and Inorganics (W	VATER)		•	
			Sample Name	Test Well 3
			Sample Matrix	Ground Water
			Sample Date	27/10/2021
Parameter	Units	RL		Result
etals and Inorganics (continued)				
Lithium (dissolved)	mg/L	0.0001		0.0254
Magnesium (dissolved)	mg/L	0.001		15.7
Manganese (dissolved)	mg/L	0.00001		0.00574
Molybdenum (dissolved)	mg/L	0.00004		0.00048
Sodium (dissolved)	mg/L	0.01		115
Nickel (dissolved)	mg/L	0.0001		0.0005
Phosphorus (dissolved)	mg/L	0.003		< 0.003
Lead (dissolved)	mg/L	0.00009		< 0.00009
Antimony (dissolved)	mg/L	0.0009		< 0.0009
Selenium (dissolved)	mg/L	0.00004		< 0.00004
Silicon (dissolved)	mg/L	0.02		6.45
Tin (dissolved)	mg/L	0.00006		< 0.00006
Strontium (dissolved)	mg/L	0.00002		0.469
Titanium (dissolved)	mg/L	0.00005		< 0.00005
Thallium (dissolved)	mg/L	0.00000		< 0.000005
	Ū	5		
Uranium (dissolved)	mg/L	0.00000		0.000061
	-	2		
Vanadium (dissolved)	mg/L	0.00001		0.00004
Tungsten (dissolved)	mg/L	0.00002		0.00002
Yttrium (dissolved)	mg/L	0.00002		< 0.00002
Zinc (dissolved)	mg/L	0.002		< 0.002

SGS				FINAL REPORT	CA14499-OCT21 R1 Client: Cambium Inc. Project: 11598-001 Project Manager: Kevin Warner Samplers: Willem Verduyn
PACKAGE: - Microbiology (WATER)			Sample Number Sample Name Sample Matrix	5 Test Well 3 Ground Water	
			Sample Date	27/10/2021	
Parameter Microbiology	Units	RL		Result	
Total Coliform	cfu/100mL			3	
E. Coli	cfu/100mL	-		0	
PACKAGE: - Other (ORP) (WATER)			Sample Number	5	
			Sample Name	Test Well 3	
			Sample Matrix	Ground Water 27/10/2021	
Parameter	Units	RL	Sample Date	Result	
Other (ORP)	Units			Noour	
рН	No unit	0.05		8.06	
Chloride	mg/L	1		260	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / F	Ref.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		very Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0638-OCT21	mg/L as CaCO3	2	< 2	1	20	102	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0014-NOV21	as N mg/L	0.1	<0.1	4	10	100	90	110	106	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	xf.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5004-NOV21	mg/L	1	<1	1	20	103	80	120	107	75	125
Sulphate	DIO5004-NOV21	mg/L	2	<2	2	20	86	80	120	81	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	-	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0644-OCT21	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0644-OCT21	mg/L	0.03	<0.03	ND	20	98	90	110	98	75	125
Nitrate (as N)	DIO0644-OCT21	mg/L	0.06	<0.06	0	20	101	90	110	104	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0044-NOV21	mg/L	1	<1	5	20	91	90	110	90	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ry Limits	Spike	Recover	y Limits
						(%)	Recovery		%)	Recovery	(%	6)
						(70)	(%)	Low	High	(%)	Low	High
Colour	EWL0010-NOV21	TCU	3	< 3	ND	10	95	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0638-OCT21	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	F.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0653-OCT21	mg/L	0.06	<0.06	0	10	100	90	110	96	75	125

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0007-NOV21	mg/L	0.00005	<0.00005	ND	20	105	90	110	106	70	130
Aluminum (dissolved)	EMS0007-NOV21	mg/L	0.001	<0.001	3	20	100	90	110	90	70	130
Arsenic (dissolved)	EMS0007-NOV21	mg/L	0.0002	<0.0002	0	20	104	90	110	109	70	130
Barium (dissolved)	EMS0007-NOV21	mg/L	0.00002	<0.00002	0	20	105	90	110	100	70	130
Beryllium (dissolved)	EMS0007-NOV21	mg/L	0.000007	<0.00007	ND	20	92	90	110	76	70	130
Boron (dissolved)	EMS0007-NOV21	mg/L	0.002	<0.002	1	20	102	90	110	101	70	130
Bismuth (dissolved)	EMS0007-NOV21	mg/L	0.00001	1e-005	ND	20	96	90	110	83	70	130
Calcium (dissolved)	EMS0007-NOV21	mg/L	0.01	<0.01	0	20	106	90	110	111	70	130
Cadmium (dissolved)	EMS0007-NOV21	mg/L	0.000003	<0.000003	13	20	104	90	110	119	70	130
Cobalt (dissolved)	EMS0007-NOV21	mg/L	0.000004	<0.000004	1	20	104	90	110	102	70	130
Chromium (dissolved)	EMS0007-NOV21	mg/L	0.00008	<0.00008	ND	20	105	90	110	126	70	130
Copper (dissolved)	EMS0007-NOV21	mg/L	0.0002	<0.0002	0	20	102	90	110	107	70	130
Iron (dissolved)	EMS0007-NOV21	mg/L	0.007	<0.007	2	20	107	90	110	125	70	130
Potassium (dissolved)	EMS0007-NOV21	mg/L	0.009	<0.009	1	20	107	90	110	115	70	130
Lithium (dissolved)	EMS0007-NOV21	mg/L	0.0001	<0.0001	2	20	103	90	110	116	70	130
Magnesium (dissolved)	EMS0007-NOV21	mg/L	0.001	<0.001	2	20	105	90	110	71	70	130
Manganese (dissolved)	EMS0007-NOV21	mg/L	0.00001	<0.00001	2	20	103	90	110	73	70	130
Molybdenum (dissolved)	EMS0007-NOV21	mg/L	0.00004	<0.00004	1	20	105	90	110	101	70	130
Sodium (dissolved)	EMS0007-NOV21	mg/L	0.01	<0.01	3	20	102	90	110	105	70	130
Nickel (dissolved)	EMS0007-NOV21	mg/L	0.0001	<0.0001	2	20	102	90	110	108	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery	Recover (9	-
						(70)	(%)	Low	High	(%)	Low	High
Lead (dissolved)	EMS0007-NOV21	mg/L	0.00009	<0.00001	9	20	107	90	110	101	70	130
Phosphorus (dissolved)	EMS0007-NOV21	mg/L	0.003	<0.003	ND	20	100	90	110	NV	70	130
Antimony (dissolved)	EMS0007-NOV21	mg/L	0.0009	<0.0009	1	20	104	90	110	98	70	130
Selenium (dissolved)	EMS0007-NOV21	mg/L	0.00004	<0.00004	7	20	102	90	110	105	70	130
Silicon (dissolved)	EMS0007-NOV21	mg/L	0.02	<0.02	3	20	95	90	110	NV	70	130
Tin (dissolved)	EMS0007-NOV21	mg/L	0.00006	<0.00006	0	20	107	90	110	NV	70	130
Strontium (dissolved)	EMS0007-NOV21	mg/L	0.00002	<0.00002	0	20	100	90	110	104	70	130
Titanium (dissolved)	EMS0007-NOV21	mg/L	0.00005	<0.00005	3	20	105	90	110	NV	70	130
Thallium (dissolved)	EMS0007-NOV21	mg/L	0.000005	<0.000005	ND	20	104	90	110	101	70	130
Uranium (dissolved)	EMS0007-NOV21	mg/L	0.000002	<0.000002	1	20	102	90	110	90	70	130
Vanadium (dissolved)	EMS0007-NOV21	mg/L	0.00001	<0.00001	7	20	104	90	110	115	70	130
Tungsten (dissolved)	EMS0007-NOV21	mg/L	0.00002	<0.00002	4	20	102	90	110	NV	70	130
Yttrium (dissolved)	EMS0007-NOV21	mg/L	0.00002	<0.00002	ND	20	102	90	110	NV	70	130
Zinc (dissolved)	EMS0007-NOV21	mg/L	0.002	<0.002	ND	20	101	90	110	100	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recove	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9494-OCT21	cfu/100mL	-	ACCEPTED	ACCEPTE								
					D								
Total Coliform	BAC9494-OCT21	cfu/100mL	-	ACCEPTED	ACCEPTE								
					D								

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		м	f.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0638-OCT21	No unit	0.05	NA	0		100			NA		

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0674-OCT21	mg/L	30	<30	1	20	98	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0016-NOV21	as N mg/L	0.5	<0.5	ND	10	101	90	110	81	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0634-OCT21	NTU	0.10	< 0.10	1	10	99	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

Request for Laboratory Services and CHAIN OF CUSTODY Request for Laboratory Services and CHAIN OF CUSTODY Description of the second	^{No} 023158	LAB LINS # CATYU 99-OCT 21				TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day		I CONSUMPTION MUST BE SUBMITTEL OF CUSTODY		SPLP TCLP	Specify Specify tests tests Metals M&I Voc Mor	PCB	8												/) Pink Copy - Client	V Yellow & White Copy - SGS
		LABLIN		cation/ID:	UIRED	uoted in business days (e ceived after 6pm or on we	ys 4 Days SUBMISSION	SAMPLES FOR HUMAN RINKING WATER CHAIN			ם ביישיים שלים ניסא שלאם הסוי	tende	General General Sewer Use: Sewer Use: Sewer Use:	X	4				A Åle A Vietoria						21 (mm/dd/yy)	21 (mm/dd/yy)
Request for Laboratory Services and CHAIN OF CUSTODY Request for Laboratory Services and CHAIN OF CUSTODY Concession St. Laboratory Information Section - Lab use only Representation Section - Lab use only Concession St. Laboratory Information Section - Lab use only Noncession St. Laboratory Information Section - Lab use only Concession St. Laboratory Information Section - Lab use only Concession Section - Lab use only Concession Section - Lab use only NOICE INFORMATION Control Scaling Conception Nonception Nonception Nonception Nonception Nonception Nonception Nonception		2		P.O.#:	IND TIME (TAT) REQ	TAT's are q Samples ree	TATIVE PRIOR TO S	NG (POTABLE) WATER WITH SGS DF	QUESTED		N. WEILS) /	Pesticides Organochlorine or aped SCOL SCOC	× ×												161.01 :
Request for Laboratory Services and CHAIN Concreasion St. Lakefield, ON KII. 240 Phone: 716-952-2000 Far: Tree: 877-446-0001 Far: Wires 977-446-0001 Far: Wires 977-446-0000 Far: Wires 977-446-0000 Far: Wires 977-446-0000 Far:	OF CUSTODY s.com/environment -672-0361	only			TURNAROL		ily): 1 Day	*NOTE: DRINKI	NALYSIS REC	PHC VOC)	PI I I I I I I I I I I I I I I I I I I												Date	Date
Request for Laboratory Service: Concession St. Lakefield, ON KOL 240 Phone: 706-562-2000 Fac 705- Concession St. Lakefield, ON KOL 240 Phone: 705-500 Fac 705- Concession St. Lakefield, ON KOL 240 Phone: 705-500 Fac 705- Concession St. Lakefield, ON KOL 240 Phone: 705-500 Fac 705- Concession St. Lakefield, ON KOL 240 Phone: 705-500 Fac 705- Concession St. Lakefield, ON KOL 240 Phone: 705-500 Fac 705- Concession St. Lakefield, ON KOL 240 Phone: 705-500 Fac 705- Concession St. Lakefield, ON KOL 240 Phone: 705-500 Fac 705- Constorty Seal Information St. Lakefield Science Subtraction St. Lakefield Science Science Science St. Lakefield Science Science St. Lakefield Science Science St. Lakefield Science Science St. Lakefield Science Sci	s and CHAIN (652-6365 Web: www.sgr : 877-848-8060 Fax: 519	ection - Lab use of Jent Present: Yes In Upon Receipt (°C) <u>¥</u>		1		ľ (5-7days)	al Charges May App		4	PCI]	Cn'bp'I	Bo, Ba, Ba, Ba, Gd, Cr, Co, PAHs only SVOCS all inci PAHs, ABNs, CPs													{
Request for Labora Concession St., Lakefield, ON KOL 240 Phone:: Concession St., Lakefield, ON KOL 240 Phone:: Constraint Court, London, ON, NEE 258 Phone:: Labora Received By (signature): Jabora Received By (signature): Jabora Custody Seal Intact: Yes No INVOICE INFORMATION Juncipatity: No INVOICE INFORMATION Municipatity: No Invoice Sever By-Law: Sanitary Intert: Yes No Invoice Borrites Municipatity: Not Reportable 'See note Municipatity: Not Reportable 'See note Municipatity: Not SamPLED Borrites Municipatity: Municipatity: Signature: Municipatity: Signature: Municipatity: Signature: Municipatity:	atory Service: 705-652-2000 Fax 705- 519-672-4500 Toll Free:	itory Information S Cooling Ac		-	-	Regular TA	RUSH TAT (Addition DI FASE CONFIRM R	Specify Due Date:		M&I	iics -AA2,0 (iios-AA2,0	nsil only ajiu (SW	Metals & Inor Indi CrvI, Cu, Hg PH, (B(H (Cl, Na-water) Full Metals plus B(HWS-a ICP metals plus B(HWS-a												• •	}
Received By (sign Received By (sign Custody Seal Inta INVOICE INFORM INVOICE INFO	uest for Labor ield, ON KOL 2H0 Phone: Ion. ON. N6E 258 Phone:	ature): XUN sent: Yes No	ATION							Sewer By-Law:	ž													ved	1 lew	gnature: A/NN
	Req 5 Concession St., Lakefi Consortium Court. Lond	Received By (sign Custody Seal Pre: Custody Seal Inta	INVOICE INFORM	is Report Information						qulations:	Reg 347/558 (3 Day min TAT) PWQO MMER CCME Other: MISA	ON		1										-		/
	SGS Environment, Health & Se	Acceived By: Hillow N Acceived Date: 10 / 1271, 21 (mm/dd/yy) Acceived Time: 20 : 15 (hr: min)	REPORT INFORMATION	company. CONDINT	ANNA POINT	000000	e:	Email CLOCK NOT O	1	O.Reg 153/04 O.Reg 406/19	Res/Park Ind/Com Agri/Other Agri/Other Com Agri/Other Com	RECORD OF SITE CONDITION (RSC)	SAMPLE IDENTIFICATION	1 Test Well 3	2	3	4	20	2	. 8	6	10	11	servations/Comments/Special Instructions	Sampled By (NAME): UNITED ST	Relinquished by (NAME): V

CA13580-FEB22 R1

11598-001

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Cambium Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	194 Sophia Street, Peterborough	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, K9H 1E5		
	Phone: 705-742-7900. Fax:		
Contact	Kevin Warner	Telephone	705-652-2143
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	kevin.warner@cambium-inc.com	SGS Reference	CA13580-FEB22
Project	11598-001	Received	02/18/2022
Order Number		Approved	02/28/2022
Samples	Ground Water (2)	Report Number	CA13580-FEB22 R1
		Date Reported	02/28/2022

COMMENTS

Temperature of Sample upon Receipt:11 degrees C Cooling Agent Present: No Custody Seal Present: Yes

Chain of Custody Number: 024523

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	
QC Summary	
Legend	
Annexes	

SGS

Client: Cambium Inc. Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willam Verduyn

MATRIX: WATER			Sample Number	5	6
			Sample Name	TW3	TW3 (Field
					Filtered Turb)
			Sample Matrix	Ground Water	Ground Water
			Sample Date	18/02/2022	18/02/2022
Parameter	Units	RL		Result	Result
eneral Chemistry					
Alkalinity	mg/L as CaCO3	2		250	
Conductivity	uS/cm	2		1300	
Colour	TCU	3		< 3	
Turbidity	NTU	0.10		15.7	4.35
Dissolved Organic Carbon	mg/L	1		1	
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5	
Ammonia+Ammonium (N)	as N mg/L	0.1		0.3	
Organic Nitrogen	mg/L	0.5		< 0.5	
Total Dissolved Solids	mg/L	30		811	
letals and Inorganics			I I		
Nitrite (as N)	as N mg/L	0.03		< 0.03	
Nitrate (as N)	as N mg/L	0.06		< 0.06	
Nitrate + Nitrite (as N)	as N mg/L	0.06		< 0.06	
Sulphate	mg/L	2		46	
Fluoride		0.06		0.38	
	mg/L				
Hardness	mg/L as CaCO3	0.05		391	
Silver (total)	mg/L			< 0.00005	
Aluminum (total)	mg/L	0.001		0.135	
Arsenic (total)	mg/L	0.0002		< 0.0002	
Barium (total)	mg/L	0.00002		0.326	
Beryllium (total)	mg/L	0.000007		0.000009	

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willam Verduyn

MATRIX: WATER		Sample Number	5	6
		Sample Name	TW3	TW3 (Field
				Filtered Turb)
		Sample Matrix	Ground Water	Ground Water
		Sample Date	18/02/2022	18/02/2022
Parameter	Units RL		Result	Result
Aetals and Inorganics (continued)				
Boron (total)	mg/L 0.002		0.123	
Bismuth (total)	mg/L 0.00001		< 0.00001	
Calcium (total)	mg/L 0.01		130	
Cadmium (total)	mg/L 0.000003		0.000004	
Cobalt (total)	mg/L 0.000004		0.000088	
Chromium (total)	mg/L 0.00008		0.00099	
Copper (total)	mg/L 0.0002		0.0031	
Iron (total)	mg/L 0.007		1.11	
Potassium (total)	mg/L 0.009		4.60	
Lithium (total)	mg/L 0.0001		0.0298	
Magnesium (total)	mg/L 0.001		16.0	
Manganese (total)	mg/L 0.00001		0.0436	
Molybdenum (total)	mg/L 0.00004		0.00043	
Sodium (total)	mg/L 0.01		133	
Nickel (total)	mg/L 0.0001		0.0006	
Phosphorus (total)	mg/L 0.003		0.116	
Lead (total)	mg/L 0.00009		0.00022	
Antimony (total)	mg/L 0.0009		< 0.0009	
Selenium (total)	mg/L 0.00004		< 0.00004	
Silicon (total)	mg/L 0.02		6.51	
Tin (total)	mg/L 0.00006		0.00015	

Client: Cambium Inc.

Project: 11598-001

Project Manager: Kevin Warner

Samplers: Willam Verduyn

MATRIX: WATER			Sample Number	5	6
			Sample Name	TW3	TW3 (Field
			Sample Haine		Filtered Turb)
			Sample Matrix	Ground Water	Ground Water
			Sample Date	18/02/2022	18/02/2022
Parameter	Units	RL		Result	Result
Metals and Inorganics (continued)					
Strontium (total)	mg/L	0.00002		0.749	
Titanium (total)	mg/L	0.00005		0.0128	
Thallium (total)	mg/L	0.000005		< 0.000005	
Uranium (total)	mg/L	0.000002		0.000082	
Vanadium (total)	mg/L	0.00001		0.00033	
Tungsten (total)	mg/L	0.00002		0.00002	
Yttrium (total)	mg/L	0.00002		0.00085	
Zinc (total)	mg/L	0.002		0.017	
Microbiology					
Total Coliform	cfu/100mL	0		1	
E. Coli	cfu/100mL	0		0	
Other (ORP)			I		
рН	No unit	0.05		8.19	
Chloride	mg/L	1		300	
Chionde	IIIg/L	1		500	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0363-FEB22	mg/L as CaCO3	2	< 2	ND	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.			
	Reference Blank RPD AC		Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)							
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Ammonia+Ammonium (N)	SKA0203-FEB22	as N mg/L	0.1	<0.1	1	10	99	90	110	88	75	125		

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5070-FEB22	mg/L	1	<1	0	20	110	80	120	94	75	125
Sulphate	DIO5070-FEB22	mg/L	2	<2	3	20	111	80	120	104	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)			ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0385-FEB22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0385-FEB22	mg/L	0.03	<0.03	ND	20	94	90	110	103	75	125
Nitrate (as N)	DIO0385-FEB22	mg/L	0.06	<0.06	0	20	102	90	110	95	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch Reference	Units	Units RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0201-FEB22	mg/L	1	<1	ND	20	98	90	110	89	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0361-FEB22	TCU	3	< 3	ND	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0363-FEB22	uS/cm	2	3	0	20	101	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0380-FEB22	mg/L	0.06	<0.06	ND	10	99	90	110	105	75	125

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike Recovery	Recove	ry Limits 6)	Spike Recovery	Recove	ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0151-FEB22	mg/L	0.00005	<0.00005	11	20	99	90	110	93	70	130
Aluminum (total)	EMS0151-FEB22	mg/L	0.001	<0.001	2	20	102	90	110	113	70	130
Arsenic (total)	EMS0151-FEB22	mg/L	0.0002	<0.0002	1	20	98	90 110		112	70	130
Barium (total)	EMS0151-FEB22	mg/L	0.00002	<0.00002	3	20	94	90 110		99	70	130
Beryllium (total)	EMS0151-FEB22	mg/L	0.000007	<0.000007	3	20	94	90	110	97	70	130
Boron (total)	EMS0151-FEB22	mg/L	0.002	<0.002	ND	20	99	90	110	104	70	130
Bismuth (total)	EMS0151-FEB22	mg/L	0.00001	<0.00001	ND	20	91	90			70	130
Calcium (total)	EMS0151-FEB22	mg/L	0.01	<0.01	1	20	102	90	110	112	70	130
Cadmium (total)	EMS0151-FEB22	mg/L	0.000003	<0.000003	4	20	98	90	110	111	70	130
Cobalt (total)	EMS0151-FEB22	mg/L	0.000004	<0.000004	2	20	97	90	110	110	70	130
Chromium (total)	EMS0151-FEB22	mg/L	0.00008	<0.0008	2	20	98	90	110	118	70	130
Copper (total)	EMS0151-FEB22	mg/L	0.0002	<0.0002	2	20	94	90	110	105	70	130
Iron (total)	EMS0151-FEB22	mg/L	0.007	<0.007	5	20	100	90	110	125	70	130
Potassium (total)	EMS0151-FEB22	mg/L	0.009	<0.009	1	20	104	90	110	114	70	130
Lithium (total)	EMS0151-FEB22	mg/L	0.0001	<0.0001	1	20	95	90	110	88	70	130
Magnesium (total)	EMS0151-FEB22	mg/L	0.001	<0.001	2	20	104	90	110	113	70	130
Manganese (total)	EMS0151-FEB22	mg/L	0.00001	<0.00001	1	20	101	90	110	115	70	130
Molybdenum (total)	EMS0151-FEB22	mg/L	0.00004	<0.00004	3	20	102	90	110	112	70	130
Sodium (total)	EMS0151-FEB22	mg/L	0.01	<0.01	5	20	105	90	110	125	70	130
Nickel (total)	EMS0151-FEB22	mg/L	0.0001	<0.0001	1	20	95	90	110	106	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	trix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Lead (total)	EMS0151-FEB22	mg/L	0.00009	<0.00001	4	20	96	90	110	101	70	130
Phosphorus (total)	EMS0151-FEB22	mg/L	0.003	<0.003	9	20	101	90	110	NV	70	130
Antimony (total)	EMS0151-FEB22	mg/L	0.0009	<0.0009	ND	20	108	90	90 110		70	130
Selenium (total)	EMS0151-FEB22	mg/L	0.00004	<0.00004	11	20	107	90 110		113	70	130
Silicon (total)	EMS0151-FEB22	mg/L	0.02	<0.02	3	20	97	90	110	NV	70	130
Tin (total)	EMS0151-FEB22	mg/L	0.00006	<0.00006	14	20	92	90	110	NV	70	130
Strontium (total)	EMS0151-FEB22	mg/L	0.00002	<0.00002	1	20	95	90	110	110	70	130
Titanium (total)	EMS0151-FEB22	mg/L	0.00005	<0.00005	19	20	105	90	110	NV	70	130
Thallium (total)	EMS0151-FEB22	mg/L	0.000005	5e-006	6	20	93	90	110	103	70	130
Uranium (total)	EMS0151-FEB22	mg/L	0.000002	<0.000002	0	20	94	90	110	99	70	130
Vanadium (total)	EMS0151-FEB22	mg/L	0.00001	<0.00001	6	20	96	90	110	112	70	130
Tungsten (total)	EMS0151-FEB22	mg/L	0.00002	<0.00002	6	20	93	90	110	NV	70	130
Yttrium (total)	EMS0151-FEB22	mg/L	0.00002	<0.00002	2	20	96	90	110	NV	70	130
Zinc (total)	EMS0151-FEB22	mg/L	0.002	<0.002	1	20	96	90	110	113	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref	F.
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9314-FEB22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9314-FEB22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0363-FEB22	No unit	0.05	NA	0		100			NA		

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0356-FEB22	mg/L	30	<30	2	20	99	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0191-FEB22	as N mg/L	0.5	<0.5	0	10	101	90	110	103	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	E.
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0346-FEB22	NTU	0.10	< 0.10	ND	10	99	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

^{No} 024523	rage of the		LAB LIMS #. CCA 13580-KD	22			u de attention holicieure & weekendis)	Inde statutory noticers a weekender. tends: TAT begins next business day		ONSUMPTION MUST BE SUBMITTED	F CUSTODY		SPLF ICLF	Specify Specify tests tests		11,4- Docume	Oce Datap Data Data Datar											WZC WHLY.		Yellow & White Copy - SGS	s riay appear on who want of service accessible at
			LAB LIMS #		P.O.#:	Site Location/ID:	TURNAROUND TIME (TAT) REQUIRED	TAT's are quoted in business days (exclude staturdy holidays a mean unit. Samples received after 6pm or on weekends: TAT begins next business day	Days 3 Days 4 Days	TE PRIOR TO SUBMISSION	WULE UNINATION OF CONTROL MATER CHAIN OF CUSTODY	STED	Other (please specify)	бж	400 400 400 400 400 400 400 400 400 400		Spectrate Water Charac	X										HEVER DELISE CURNINZO	· à	LIGN LOV UN VI Signature: Mr. Veliov & White Copy - SGS	red authorization for completion of work. ⊃rurrauures < company under its Ger
OF CUSTODY s.cont/environment	9-672-0361	only	No 7 Type		ada ada seta seta seta seta seta seta seta adamentente en 1000000	_			ply): 1 Day 2 Days	N + S		ANALYSIS REQUESTED	B PHC VOC Pest			×	5025(Cides BTEX only DCC F1-F4 only 51-F4 + BTE 51-F4 + BTE											-Korl E. W. Giltever		Date: <	ubmission of samples to SGS is conside
Request for Laboratory Services and CHAIN OF CUSTODY	- Laketield: 185 Concession 34, Laketierd, Oriver Line 1996 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	Laboratory Information Section - Lab use only	Cooling Agent Present: Yes N Tomocrine I tom Receint (°C)	1 / 1 / - / - / - / - / - / - / - / - /	ter and the second s	Duriect # 11<99-00		K Regular TAT (5-7days)	RUSH TAT (Additional Charges May Apply):	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION 1	Specify Due Date:		M&I SVOC PCB		С, SAR-98 С, SAR-98 У) Н9. СгУ , Мо. И,	188. Uite IIV IIV IIV IIV	Aletais & Inoi al Cavi. Cavi. Pap. Ha al Cavi. Cavi. Pap. Ha Di Metais Ba Metais Ba Metais Ba Metais Ba Metais Ba Metais Meta												UNE DOTE 12 MAN MUL	1 c	tion/handling and transportation of samples. {2} S
Jest for Laborato	on, ON, NGE 2S8 Phone: 519-6	Laboratory	(IN	t Yes [] No []		_			RUS	PLE	Spec		Sewer Bv-Law:	Sanitary Santary Municipatity:			# OF 0TTLES MATRIX 161d Filtered	a (1)	+										HURBINITY JONNOLD-		onvided direction on sample collect
Red	cession or, Landin ortium Court, Londe	Commentation	Custody Seal Present: Yes	Custody Seal Intact: Ye		(same as Report Information)							dions-	Inter regulations. Reg 347(558 (3 Day min TAT) PWQO MMER JCCME Other:	MISA ODWS Not Reportable *See note	ON 🗌	TIME # OF Sampled Bottles	20.21	10.01										1		
	Laketieid: 185 Cons London: 657 Cons					🗶 (same as R	Company:	Contact:	Address:	Phone:	-		Other Deculations	Criter regulation of the second states of the secon	MISA		DATE SAMPLED	10-21-2	コラートク										nere ere 2	いうこうく	うシン
	Environment, Health & Safety - Laketteric: 185 Concession 94, Laketteric, 94, 96 E 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	W Orleg	A .	03:61	REPORT INFORMATION	2		+ WALLE VI	- uhonoun	1	Kevin, voice nor a	Email: COSC Divers - 100, COSC BEGI		O.Reg D.Reg 40019 Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Apri/Other Medium/Fine	nme	1.0	SAMPLE IDENTIFICATION		PN-	2	4	5	9	7	8	6	10		The	7	Relinquished by (NAME):

CA14355-APR21 R----

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Cambium Inc.	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	52 Hunter Street East	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9H 1G5. Canada		
Contact	Kevin Warner	Telephone	2165
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile		Email	jill.campbell@sgs.com
Email	kevin.warner@cambium-inc.com; file@cambium-inc.com;jerem	SGS Reference	CA14355-APR21
Project		Received	04/13/2021
Order Number		Approved	04/19/2021
Samples	Sewage (4)	Report Number	CA14355-APR21 R
		Date Reported	04/19/2021

COMMENTS

Temperature of Sample upon Receipt: 12 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:NA

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	
Index	3
Results	
QC Summary	5-6
Legend	
Annexes	

Client: Cambium Inc.

Project:

Project Manager: Kevin Warner

Samplers: Josh Munro

PACKAGE: - General Chemistry (WA	ATER)		Sample Number	5	6	7	8
			Sample Name	1275 Seaforth	1271 Seaforth	3188 Lakefield	3220 Lakefield
						Rd	Rd
			Sample Matrix	Sewage	Sewage	Sewage	Sewage
			Sample Date	13/04/2021	13/04/2021	13/04/2021	13/04/2021
Parameter	Units	RL		Result	Result	Result	Result
General Chemistry							
Ammonia+Ammonium (N)	as N mg/L	0.1		< 0.1	< 0.1	< 0.1	0.2
PACKAGE: - Metals and Inorganics ((WATER)		Sample Number	5	6	7	8
			Sample Name	1275 Seaforth	1271 Seaforth	3188 Lakefield	3220 Lakefield
						Rd	Rd
			Sample Matrix	Sewage	Sewage	Sewage	Sewage
			Sample Date	13/04/2021	13/04/2021	13/04/2021	13/04/2021
Parameter	Units	RL		Result	Result	Result	Result
Metals and Inorganics							
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	0.04
Nitrate (as N)	as N mg/L	0.06		0.15	0.30	2.10	0.48
Nitrate + Nitrite (as N)	as N mg/L	0.06		0.15	0.30	2.10	0.52

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		м	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0120-APR21	as N mg/L	0.1	<0.1	5	10	96	90	110	100	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-IENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	Duplicate LCS/Spike Blar		S/Spike Blank		M	Matrix Spike / Ref. Spike Recovery Limits Recovery (%)	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)				
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0231-APR21	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0231-APR21	mg/L	0.03	<0.03	5	20	94	80	120	99	75	125
Nitrate (as N)	DIO0231-APR21	mg/L	0.06	<0.06	0	20	99	80	120	88	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

•		Requ	est for Laborator	Services	and CHA	IN OF CL	JSTODY	(Gene	ral)				
	600	SGS Environmental Services - Lakefield: 185	5 Concession St., Lakefield	, ON KOL 2HO P	hone: 705-652	-2000 Toll Fr	ee: 877-747	-7658 Fax:	705-652-6	365 Web: www	w.ca.sgs.cor	n {4}	
		SGS Environmental Services - London: 657				-4500 Toll Fr	ee: 877-848	-8060 Fax:	519-672-0	361 Web: www	w.ca.sgs.cor	n {4}	
		W: 64,13,21	Laboratory Infe	ormation Sec			-+	100	Λ (AT	1720	Ci	22
	ed Date (mm/dd/yy)	11 2			LAB LIMS		annint (°C	TP:	1.15	113	122	y	20
Receive	ed Time (After Hour	rs Only): <u> : 20</u>	Billing & Repo		Temperatu ation	re Upon R	eceipt (*C	<i>.</i>): <i>1 4</i>	- (2	-112	and males		
ę	Company:	Cambium - Inc	/			Quote #:							
Invoice/Receipt to {3}:	Attention:	IL evin INCORT				Attached	Parame	ter List:			YES		NO
e/Re({3}:	Address:	52 Honter 54 F. Pete	rborneit	ON					Turnaro	und Time			
voice		SK PORTA JA LA, PORT		012		ls *Rush	Turnaro	und Time	Require	ed?		YES	
Ē	Email:	Kevin. Worner @ Combium-	Inc. com			Specify:							
Projec	t Name/Number:	11598-001	P.O. #:			• Rush TA R	equests Rec	quire Lab Ap	proval				
		Client Info	rmation/Report To:			1				Client La	b #:		
C	ompany Name:					Phone	Number	:		705	74:	2-79	00
)	Contact Name:	Samo as a	bare			Fax Nu	mber:						
	Address:	364170 910 1	2,000			E-mail:							
	Copy to:					.1							
			Sample	Information						A. Street			
						(plea		r the an	alysis i	Request required blies to ea	below a		ck off
		Sample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	noor	litude	したいよう					
					5	×	4	6					
12	75 See	ferth	04/13/21	10:20		K	×	\succ					
12	71 See	a forth	1	10:30	2	7.	X	×					
3	88 Jone	ufrend Road		10:40	2	\succ	· ン・	S.					
32		effects Road	\bigtriangledown	10:50	2	*	×	7					
													-
	Sampled By {1}:	(Name) JOSL Mund	(Signature)	JAC				Date:	O U	113	21	(mm/	dd/yy)
Re	linquished by {2):	JUSIN	(Signature)	SMI				Date:	0 4	113	21	(mm/	dd/yy)
Note: {	1} Submission of sar	nples to SGS is acknowledgement that you have been	etained on file in the co	ntract. or in ar	alternative	format (e.g.	shipping	document	s). {3} R	esults may b	be sent by	email to a	nsidered In
unlimite	ad number of addres	ses for no additional cost. Fax is available upon require Company under its General Conditions of Service access	lest (4) Completion of v	vork may requ	ire the subco inditions.htm.	(Printed cop	f samples	between t	he Londo	on and Lake	field labora	atories.	

Appendix E Water Well Records

Water Well Records Summary Report

WELL ID (TAG):	5101930 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1952-01-22	Bedrock	PRDG 0002 CLAY MSND STNS 0003 LMSN 0016	WELL DEPTH (m): 15.85
UTM (ZONE): ERROR:	17 716622 4922210 W	Water Supply		STATIC LEVEL (m): 3
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)

WELL ID (TAG):	5103901 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1966-02-02	Bedrock	PRDG 0002 GREY CLAY SHLE LMSN 0011 GREY LMSN 0017	WELL DEPTH (m): 17.	.37
UTM (ZONE): ERROR:	17 716143 4921870 W	Water Supply		STATIC LEVEL (m):	9
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	9

WELL ID (TAG):	5104020 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	N
DATE COMPLETED:	1958-06-09	Overburden	LOAM 0000 BRWN CLAY GRVL STNS 0004 GRVL MSND 0008 GREY CLAY	WELL DEPTH (m):	16.46
UTM (ZONE): ERROR:	17 715964 4921577 W	Water Supply	GRVL 0013 GRVL MSND 0016 GRVL 0016	STATIC LEVEL (m):	6
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104021 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1959-05-25	Bedrock	PRDR 0016 LMSN 0023	WELL DEPTH (m):	23.16
UTM (ZONE): ERROR:	17 715909 4921726 W	Water Supply		STATIC LEVEL (m):	5
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5104023 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1962-07-04	Overburden	LOAM 0001 CLAY STNS 0005 GRVL CLAY 0014 GRVL 0014	WELL DEPTH (m):	14.33
UTM (ZONE): ERROR:	17 715931 4921645 W	Water Supply		STATIC LEVEL (m):	6
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5104024 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1963-10-07	Bedrock	CLAY STNS 0018 CLAY GRVL 0020 CLAY 0021 GREY LMSN 0024	WELL DEPTH (m): 24.38
UTM (ZONE):	17 715975 4921523 W	Water Supply		STATIC LEVEL (m): 3
ERROR: margin of erro	or : 100 m - 300 m	Domestic		RECOMMENDED 14

WELL ID (TAG):	5104024 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1963-10-07	Bedrock	CLAY STNS 0018 CLAY GRVL 0020 CLAY 0021 GREY LMSN 0024	WELL DEPTH (m): 24.38	8
UTM (ZONE): ERROR:	17 715975 4921523 W	Water Supply		STATIC LEVEL (m):	3
	or : 100 m - 300 m	Domestic		RECOMMENDED 14 PUMP RATE (LPM)	4

WELL ID (TAG):	5104025 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	1
DATE COMPLETED:	1967-01-31	Overburden	LOAM 0001 GREY CLAY MSND STNS 0009 BRWN CLAY MSND GRVL 0012	WELL DEPTH (m):	12.19
UTM (ZONE): ERROR:	17 715936 4921644 W	Water Supply		STATIC LEVEL (m):	6
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5104026 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1967-08-29	Overburden	BRWN CLAY STNS 0002 GRVL MSND CLAY 0011 MSND 0011 GRVL 0012	WELL DEPTH (m):	11.58
UTM (ZONE): ERROR:	17 715939 4921569 W	Water Supply		STATIC LEVEL (m):	3
	ror : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5104027 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1949-05-16	Bedrock	CLAY 0002 HPAN 0009 GREY LMSN 0014	WELL DEPTH (m): 13.72
UTM (ZONE):	17 715995 4921859 W	Water Supply		STATIC LEVEL (m): 6
ERROR: unkno	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)

WELL ID (TAG):	5104028 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	I
DATE COMPLETED:	1949-11-30	Overburden	CLAY 0003 HPAN 0014	WELL DEPTH (m):	14.02
UTM (ZONE): ERROR:	17 715935 4921879 W	Water Supply		STATIC LEVEL (m):	8
	nown UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104029 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1950-02-11	Overburden	CLAY MSND STNS 0015 GRVL 0016	WELL DEPTH (m):	15.85
UTM (ZONE): ERROR:	17 716032 4921910 W	Water Supply		STATIC LEVEL (m):	3
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104029 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1950-02-11	Overburden	CLAY MSND STNS 0015 GRVL 0016	WELL DEPTH (m):	15.85
UTM (ZONE):	17 716032 4921910 W	Water Supply		STATIC LEVEL (m):	3
ERROR:	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104030 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	N
DATE COMPLETED:	1951-01-24	Overburden	LOAM 0001 HPAN 0015 GRVL 0016	WELL DEPTH (m):	15.54
UTM (ZONE): ERROR:	17 716142 4921885 W	Water Supply		STATIC LEVEL (m):	6
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104030 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1951-01-24	Overburden	LOAM 0001 HPAN 0015 GRVL 0016	WELL DEPTH (m):	15.54
UTM (ZONE): ERROR:	17 716142 4921885 W	Water Supply		STATIC LEVEL (m):	6
	nown UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104031 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1951-06-05	Overburden	LOAM 0001 CLAY MSND STNS 0009 GRVL 0009	WELL DEPTH (m):	8.84
UTM (ZONE):	17 716176 4921797 W	Water Supply		STATIC LEVEL (m):	2
ERROR:	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104032 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1950-12-06	Overburden	CLAY BLDR 0010	WELL DEPTH (m):	9.75
UTM (ZONE): ERROR:	17 716158 4921854 W	Water Supply		STATIC LEVEL (m):	4
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104033 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1950-12-06	Overburden	CLAY SILT BLDR 0013	WELL DEPTH (m):	13.41
UTM (ZONE): ERROR:	17 716217 4921877 W	Water Supply		STATIC LEVEL (m):	3
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104034 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1950-12-06	Overburden	CLAY SILT BLDR 0009	WELL DEPTH (m):	8.53
UTM (ZONE): ERROR:	17 716226 4921862 W	Water Supply		STATIC LEVEL (m):	2
	nown UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104035 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1950-12-06	Overburden	CLAY SILT BLDR 0012	WELL DEPTH (m):	11.58
UTM (ZONE):	17 716215 4921897 W	Water Supply		STATIC LEVEL (m):	4
ERROR: unkno	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104036 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1950-12-06	Overburden	CLAY BLDR SILT 0010	WELL DEPTH (m):	10.36
UTM (ZONE): ERROR:	17 716194 4921941 W	Water Supply		STATIC LEVEL (m):	4
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104037 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1950-12-06	Overburden	CLAY SILT BLDR 0012	WELL DEPTH (m):	11.58
UTM (ZONE): ERROR:	17 716137 4921897 W	Water Supply		STATIC LEVEL (m):	5
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104040 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1953-01-29	Overburden	CLAY MSND STNS 0015 GRVL 0017	WELL DEPTH (m):	17.07
UTM (ZONE): ERROR:	17 715990 4921679 W	Water Supply		STATIC LEVEL (m):	6
	nown UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104045 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1954-02-09	Overburden	CLAY MSND STNS 0014 GRVL 0014	WELL DEPTH (m):	14.33
UTM (ZONE):	17 715984 4921734 W	Water Supply		STATIC LEVEL (m):	6
Unkno	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104046 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1956-04-16	Overburden	LOAM 0001 STNS CLAY 0009 CSND GRVL 0012	WELL DEPTH (m):	12.5
UTM (ZONE): ERROR:	17 715986 4921835 W	Water Supply		STATIC LEVEL (m):	4
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104048 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1959-11-16	Overburden	CLAY HPAN 0011 GREY GRVL 0012	WELL DEPTH (m):	12.19
UTM (ZONE): ERROR:	17 716256 4921758 W	Water Supply		STATIC LEVEL (m):	4
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	18

WELL ID (TAG):	5104049 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1961-11-20	Bedrock	CLAY STNS 0006 LMSN 0024	WELL DEPTH (m):	24.38
UTM (ZONE): ERROR:	17 716085 4921461 W	Water Supply		STATIC LEVEL (m):	3
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5104053 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1965-01-21	Bedrock	PRDR 0009 GREY CLAY 0015 GREY CLAY MSND STNS 0018 GREY LMSN 0020	WELL DEPTH (m):	20.42
UTM (ZONE): ERROR:	17 716164 4921805 W	Water Supply		STATIC LEVEL (m):	6
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	14

WELL ID (TAG):	5104054 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1965-11-23	Bedrock	LOAM 0000 GREY CLAY STNS 0015 GREY LMSN 0039	WELL DEPTH (m): 38.71
UTM (ZONE): ERROR:	17 716130 4921296 W	Water Supply		STATIC LEVEL (m): 6
	or : 100 m - 300 m	Domestic		RECOMMENDED 5 PUMP RATE (LPM)

WELL ID (TAG):	5104055 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	l
DATE COMPLETED:	1967-01-31	Bedrock	CLAY STNS 0017 GREY LMSN 0020	WELL DEPTH (m):	19.81
UTM (ZONE): ERROR:	17 716159 4921860 W	Water Supply		STATIC LEVEL (m):	9
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	32

WELL ID (TAG):	5104087 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	N
DATE COMPLETED:	1954-01-14	Bedrock	PRDG 0006 LMSN 0027	WELL DEPTH (m):	27.43
UTM (ZONE): ERROR:	17 715736 4922205 W	Water Supply		STATIC LEVEL (m):	6
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	5104105 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	I
DATE COMPLETED:	1967-12-19	Bedrock	LOAM 0001 CLAY STNS 0005 GREY LMSN 0007	WELL DEPTH (m):	6.71
UTM (ZONE): ERROR:	17 716328 4922099 W	Water Supply		STATIC LEVEL (m):	1
	or : 100 m - 300 m	Commerical		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5105182 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1970-10-15	Overburden	BRWN CLAY BLDR 0008 GREY CLAY GRVL 0012 GRVL SILT MSND 0014	WELL DEPTH (m): 13.72
UTM (ZONE): ERROR:	17 716015 4921373 W	Water Supply		STATIC LEVEL (m): 2
	ror : 30 m - 100 m	Domestic		RECOMMENDED 45

WELL ID (TAG):	5105363 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	1971-02-04	Overburden	PRDR 0011 BRWN GRVL 0012	WELL DEPTH (m):	12.5
UTM (ZONE): ERROR:	17 716055 4921523 W	Water Supply		STATIC LEVEL (m):	6
margin of error : 30 m - 100 m		Domestic		RECOMMENDED PUMP RATE (LPM)	18

WELL ID (TAG):	5105418 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1971-02-04	Bedrock	BRWN CLAY STNS 0015 GREY LMSN 0019	WELL DEPTH (m):	18.9
UTM (ZONE): ERROR:	17 716065 4921823 W	Water Supply		STATIC LEVEL (m):	9
	ror : 30 m - 100 m	Domestic		RECOMMENDED PUMP RATE (LPM)	14

WELL ID (TAG):	5106188 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1972-12-20	Bedrock	PRDG 0009 STNS GRVL 0015 GRVL SAND 0017 LMSN 0018	WELL DEPTH (m):	18.29
UTM (ZONE): ERROR:	17 716065 4921523 W	Water Supply		STATIC LEVEL (m):	11
	or : 30 m - 100 m	Domestic		RECOMMENDED PUMP RATE (LPM)	68

WELL ID (TAG):	5106188 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1972-12-20	Bedrock	PRDG 0009 STNS GRVL 0015 GRVL SAND 0017 LMSN 0018	WELL DEPTH (m):	18.29
UTM (ZONE): ERROR:	17 716065 4921523 W	Water Supply		STATIC LEVEL (m):	11
	ror : 30 m - 100 m	Domestic		RECOMMENDED PUMP RATE (LPM)	68

WELL ID (TAG):	5106681 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1973-12-17	Overburden	GREY CLAY BLDR 0009 GREY CLAY GRVL 0017	WELL DEPTH (m): 17.37
UTM (ZONE): ERROR:	17 716074 4921671 W	Water Supply		STATIC LEVEL (m): 6
margin of error : 30 m - 100 m		Domestic		RECOMMENDED 23 PUMP RATE (LPM)

WELL ID (TAG):	5107662 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1975-12-08	Overburden	BRWN CLAY 0003 BRWN CLAY SAND 0013 BRWN GRVL 0014	WELL DEPTH (m): 14.	.33
UTM (ZONE): ERROR:	17 715915 4921573 W	Water Supply		STATIC LEVEL (m):	5
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	68

WELL ID (TAG):	5109858 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1980-06-02	Bedrock	PRDR 0014 GRVL FSND SILT 0020 GREY LMSN 0020	WELL DEPTH (m):	20.42
UTM (ZONE): ERROR:	17 716065 4921373 W	Water Supply		STATIC LEVEL (m):	5
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5110712 ()	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1983-03-09	Bedrock	BLCK LOAM 0000 GREY CLAY STNS 0013 GREY GRVL CLAY STNS 0019 GREY	WELL DEPTH (m):	19.81
UTM (ZONE): ERROR:	17 716065 4921323 W	Water Supply	LMSN SHLE 0020	STATIC LEVEL (m):	5
	or : 100 m - 300 m	Domestic		RECOMMENDED PUMP RATE (LPM)	55

WELL ID (TAG):	5112296 (NA)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1987-04-28	Bedrock	BLCK LOAM 0000 GREY CLAY LMSN SHLE 0010 GREY CLAY SNDY 0021 GREY	WELL DEPTH (m): 22.8	86
UTM (ZONE):	17 716401 4921311 L	Water Supply		STATIC LEVEL (m):	9
ERROR: unkno	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5112593 (NA)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1987-09-16	Bedrock	BRWN FILL MGRD 0005 GREY LMSN PORS 0032	WELL DEPTH (m): 32.	31
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m):	5
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	5

WELL ID (TAG):	5112832 (23887)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	1
DATE COMPLETED:	1987-12-18	Bedrock	GREY FILL SOFT 0010 GREY LMSN PORS 0017	WELL DEPTH (m):	17.07
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m):	5
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	36

WELL ID (TAG):	5112833 (23888)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1987-12-18	Bedrock	GREY FILL MGRD 0016 GREY LMSN PORS 0017	WELL DEPTH (m):	16.76
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m):	5
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	36

WELL ID (TAG):	5113263 (36512)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1988-08-17	Bedrock	GREY CLAY 0003 GREY LMSN SHLE 0006 GREY LMSN LYRD 0015	WELL DEPTH (m): 15.24
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m): 4
	own UTM	Domestic		RECOMMENDED 55 PUMP RATE (LPM)

WELL ID (TAG):	5115104 (75055)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1991-03-12	Bedrock	BRWN LOAM 0000 BRWN CLAY STNS 0015 BRWN CLAY SHLE ROCK 0018	WELL DEPTH (m): 20.12
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply	GREY LMSN ROCK 0020	STATIC LEVEL (m): 8
	own UTM	Domestic		RECOMMENDED 14 PUMP RATE (LPM)

WELL ID (TAG):	5115604 (104920)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1991-12-30	Bedrock	BRWN LOAM SAND SOFT 0000 BRWN CLAY SNDY STNS 0001 BRWN SHLE	WELL DEPTH (m): 17.68
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply	LMSN SAND 0004 GREY LMSN HARD 0018	STATIC LEVEL (m): 4
	own UTM	Domestic		RECOMMENDED 14

WELL ID (TAG):	5115604 (104920)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1991-12-30	Bedrock	BRWN LOAM SAND SOFT 0000 BRWN CLAY SNDY STNS 0001 BRWN SHLE	WELL DEPTH (m): 17.68
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply	LMSN SAND 0004 GREY LMSN HARD 0018	STATIC LEVEL (m): 4
	nown UTM	Domestic		RECOMMENDED 14

WELL ID (TAG):	5115604 (104920)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1991-12-30	Bedrock	BRWN LOAM SAND SOFT 0000 BRWN CLAY SNDY STNS 0001 BRWN SHLE	WELL DEPTH (m): 17.68
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply	LMSN SAND 0004 GREY LMSN HARD 0018	STATIC LEVEL (m): 4
	own UTM	Domestic		RECOMMENDED 14

WELL ID (TAG):	5115744 (105981)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1992-02-12	Bedrock	BRWN LOAM 0000 GREY SHLE ROCK BLDR 0005 GREY LMSN ROCK 0019	WELL DEPTH (m): 18.59
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m): 11
	own UTM	Domestic		RECOMMENDED 23 PUMP RATE (LPM)

WELL ID (TAG):	5115744 (105981)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1992-02-12	Bedrock	BRWN LOAM 0000 GREY SHLE ROCK BLDR 0005 GREY LMSN ROCK 0019	WELL DEPTH (m):	18.59
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m):	11
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	5116411 (125463)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1993-12-21	Bedrock	BRWN CLAY STNS 0003 BRWN SAND STNS HARD 0006 GREY SAND CLAY	WELL DEPTH (m): 15.54
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply	STNS 0008 GREY LMSN ROCK 0016	STATIC LEVEL (m): 5
	own UTM	Domestic		RECOMMENDED 14

WELL ID (TAG):	5116578 (144340)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1994-06-06	Bedrock	UNKN 0015 LMSN ROCK 0016	WELL DEPTH (m):	15.85
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m):	5
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	36

WELL ID (TAG):	5117479 (173589)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1997-06-13	Bedrock	GREY CLAY STNS 0015 GREY LMSN 0017	WELL DEPTH (m): 17.37
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m): 5
	own UTM	Domestic		RECOMMENDED 68 PUMP RATE (LPM)

WELL ID (TAG):	5117484 (179563)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	1997-06-25	Bedrock	BRWN LOAM LOOS 0000 BRWN SAND GRVL PCKD 0003 GREY CLAY GRVL	WELL DEPTH (m):	19.51
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply	PCKD 0014 GREY CLAY PCKD 0018 BLCK SHLE LMSN LYRD 0020	STATIC LEVEL (m):	8
	own UTM	Domestic		RECOMMENDED PUMP RATE (LPM)	14

WELL ID (TAG):	5117484 (179563)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	1997-06-25	Bedrock	BRWN LOAM LOOS 0000 BRWN SAND GRVL PCKD 0003 GREY CLAY GRVL	WELL DEPTH (m): 19.51
UTM (ZONE): ERROR:	17 716401 4921311 L	Water Supply		STATIC LEVEL (m): 8
	iown UTM	Domestic		RECOMMENDED 14

WELL ID (TAG):	5118710 (228776)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	2001-05-17	Bedrock	BRWN LOAM LOOS 0000 BRWN CLAY GRVL PCKD 0004 GREY SHLE LMSN	WELL DEPTH (m): 11.89
UTM (ZONE): ERROR:	17 716166 4921968 W	Water Supply		STATIC LEVEL (m): 2
margin of error : 10 - 30 m		Domestic		RECOMMENDED 27 PUMP RATE (LPM)

WELL ID (TAG):	5118710 (228776)	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	2001-05-17	Bedrock	BRWN LOAM LOOS 0000 BRWN CLAY GRVL PCKD 0004 GREY SHLE LMSN	WELL DEPTH (m):	1.89
UTM (ZONE): ERROR:	17 716166 4921968 W	Water Supply	GRVL 0009 BLCK LMSN HARD 0012	STATIC LEVEL (m):	2
margin of error : 10 - 30 m		Domestic		RECOMMENDED PUMP RATE (LPM)	27

WELL ID (TAG):	5120014 (Z04622) A004	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	2004-09-28	Bedrock	BLCK LOAM SOFT 0001 BLCK LOAM SOFT 0002 BRWN SAND SOFT 0004	WELL DEPTH (m): 16.15
UTM (ZONE): ERROR:	17 715948 4921944 W	Water Supply	GREY CLAY STNS HARD 0011 GREY SILT SOFT 0012 GREY LMSN HARD 0015	STATIC LEVEL (m): 2
margin of e	error : 10 - 30 m	Commerical	BRWN LMSN FCRD 0015 GREY LMSN HARD 0016	RECOMMENDED 40

WELL ID (TAG):	7103867 (Z72824) A058	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	2008-04-11	Bedrock	BRWN LOAM 0001 BRWN CLAY STNS 0005 GREY CLAY STNS 0018 GREY	WELL DEPTH (m): 20.11
UTM (ZONE): ERROR:	17 716081 4921415 W	Water Supply	LMSN ROCK 0020	STATIC LEVEL (m): 8
	error : 10 - 30 m	Domestic		RECOMMENDED 14

WELL ID (TAG):	7103867 (Z72824) A058	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	2008-04-11	Bedrock	BRWN LOAM 0001 BRWN CLAY STNS 0005 GREY CLAY STNS 0018 GREY	WELL DEPTH (m): 20.11
UTM (ZONE): ERROR:	17 716081 4921415 W	Water Supply	LMSN ROCK 0020	STATIC LEVEL (m): 8
margin of error : 10 - 30 m		Domestic		RECOMMENDED 14

WELL ID (TAG):	7177176 (Z139943) A11	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	2012-02-23	Bedrock	BRWN LOAM 0000 BRWN CLAY STNS 0004 GREY LMSN 0018	WELL DEPTH (m): 18.29
UTM (ZONE): ERROR:	17 715701 4921723 W	Water Supply		STATIC LEVEL (m): 3
	ror : 30 m - 100 m	Domestic		RECOMMENDED 16

WELL ID (TAG):	7250980 (Z208221) A16	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	2015-10-26	Bedrock	BRWN LOAM SAND 0000 GREY SAND SLTY WBRG 0003 GREY LMSN CLAY	WELL DEPTH (m):	10.36
UTM (ZONE): ERROR:	17 716367 4921613 W		LYRD 0010	STATIC LEVEL (m):	
	or : 30 m - 100 m	Test Hole		RECOMMENDED PUMP RATE (LPM)	

WELL ID (TAG):	7305903 (Z244416) A21	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATIO	N
DATE COMPLETED:	2018-02-15	Bedrock	PRDR 0014 GREY CLAY HPAN HARD 0016 GREY LMSN ROCK HARD 0018	WELL DEPTH (m):	30.48
UTM (ZONE): ERROR:	17 716112 4921344 W	Water Supply		STATIC LEVEL (m):	7
	or : 30 m - 100 m	Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	7305903 (Z244416) A21	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	2018-02-15	Bedrock	PRDR 0014 GREY CLAY HPAN HARD 0016 GREY LMSN ROCK HARD 0018	WELL DEPTH (m):	30.48
UTM (ZONE): ERROR:	17 716112 4921344 W	Water Supply	GREY LMSN ROCK HARD 0027 GREY LMSN ROCK HARD 0030	STATIC LEVEL (m):	7
margin of error : 30 m - 100 m		Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	7305903 (Z244416) A21	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION	
DATE COMPLETED:	2018-02-15	Bedrock	PRDR 0014 GREY CLAY HPAN HARD 0016 GREY LMSN ROCK HARD 0018	WELL DEPTH (m):	30.48
UTM (ZONE): ERROR:	17 716112 4921344 W	Water Supply	GREY LMSN ROCK HARD 0027 GREY LMSN ROCK HARD 0030	STATIC LEVEL (m):	7
margin of error : 30 m - 100 m		Domestic		RECOMMENDED PUMP RATE (LPM)	23

WELL ID (TAG):	7305903 (Z244416) A21	WELL TYPE AND USAGE	REPORTED STRATIGRAPHY (m bgs)	WATER INFORMATION
DATE COMPLETED:	2018-02-15	Bedrock	PRDR 0014 GREY CLAY HPAN HARD 0016 GREY LMSN ROCK HARD 0018	WELL DEPTH (m): 30.48
UTM (ZONE): ERROR:	17 716112 4921344 W	Water Supply	GREY LMSN ROCK HARD 0027 GREY LMSN ROCK HARD 0030	STATIC LEVEL (m): 7
margin of error : 30 m - 100 m		Domestic		RECOMMENDED 23 PUMP RATE (LPM)

1. Core Material and Descriptive terms

Code	Description	Code	Description	Code	Description	Code	Description	Code	Description		Description WHITE
BSLT CGRD CGVL CHRT CLAY CLN CLYY CMTD CONG CRYS CSND DKCL DLMT DNSE	BOULDERS BASALT COARSE-GRAINED COARSE GRAVEL CHERT CLAY CLEAN CLAYEY CEMENTED CONGLOMERATE CONGLOMERATE CORSE SAND DARK-COLOURED DOLOMITE DENSE DIRTY DRY	FGRD FGVL FILL FLDS FLNT FOSS FSND GRIS GRNT GRNT GRVL GRWK GVLY GYPS HARD	FRACTURED FINE GRAVEL FILL FELDSPAR FLINT FOSILIFEROUS FINE SAND GNEISS GRANITE GREENSTONE GRAVEL GRAVEL GRAVEL GRAVELLY GRAVELLY GYESUM HARD HARD	LIMY LMSN LOAM LOOS LTCL LYRD MARL MGRD MGVL MRBL MSND MUCK OBDN PCKD PEAT	LIMESTONE TOPSOIL LOOSE LIGHT-COLOURED LAYERED MARL MEDIUM-GRAINED MEDIUM GRAVEL MARBLE MEDIUM SAND MUCK OVERBURDEN PACKED	PRDG PRDR QRTZ QSND QTZ ROCK SAND SHLE SHLY SHRP SHST SLTE SLTY SNDS	PREVIOUSLY DUG PREV. DRILLED QUARTZITE QUICKSAND QUARTZ ROCK SAND SHALE SHALE SHALY SHARP SCHIST	SPST STKY STNS STNY THIK THIN TILL UNKN VERY	VERY WATER-BEARING WOOD FRAGMENTS	GREY BLUE GREN YLLW BRWN RED BLCK	GREY BLUE GREEN YELLOW BROWN RED BLACK BLUE-GREY

2. Core Colour

Appendix F Water Budget Calculations

	THOR	NTHWA	AITE-T	PE MC	ONTHL	Y WAT	ER-BA	LANCE	MODE	L			
	(modified from Dingman 2001: ex. 7-13, Box 7-3 using ET model of Hamon (1												
			Input D)ata		Computed Values					Surplus		340
												r	nm/yr
Location:	Peterb	orough,	Trent	Lat. =	44.2	degree	;	SOIL	max =	150	mm		
					0.77	rad							
Declination (deg)	-21.3	-13.3	-2.0	9.8	18.9	23.3	21.3	13.7	3.0	-9.0	-18.6	-23.3	
Declination (rad)	-0.37	-0.23	-0.03	0.17	0.33	0.41	0.37	0.24	0.05	-0.16	-0.32	-0.41	
DayLength (hr)*	9.0	10.2	11.7	13.3	14.6	15.3	15.0	13.8	12.4	10.8	9.5	8.7	
*For lat. > 66.5	5, replac	ce #NU	M! with	24 in s	ummer	; 0 in wi	inter.						
					WATE	ER BAL	ANCE						
			Temperatures in C, water-balance to					erms in	mm.				
Month:	J	F	М	Α	М	J	J	Α	S	0	Ν	D	Year
=======	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Р	57	49	57	66	89	83	74	87	92	77	86	66	882
Т	-8	-7	-1	6.3	13	18	21	19	15	8.4	2.4	-4	
F	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.40	0.00	
RAIN	0	0	0	66	89	83	74	87	92	77	34	0	602
SNOW	57	49	57	0	0	0	0	0	0	0	51	66	280
PACK	154	203	259	0	0	0	0	0	0	0	31	97	
MELT	0	0	0	259	0	0	0	0	0	0	21	0	280
INPUT (W _m)	0	0	0	326	89	83	74	87	92	77	55	0	882
PET	0	0	0	42	70	100	115	99	68	39	23	0	556
W - PET	0	0	0	284	19	-17	-42	-12	25	38	32	0	
SOIL	150	150	150	150	150	134	101	94	118	150	150	150	
∕\SOIL	0	0	0	0	0	-16	-32	-8	25	32	0	0	
ET	0	0	0	42	70	99	106	95	68	39	23	0	542
W-ET-∕\SOIL	0	0	0	284	19	0	0	0	0	6	32	0	340
	57	49	57	24	19	-17	-42	-12	25	38	62	66	