All sewage system applications must have completed soil sieve analysis to include with application.

Sewage System Design Height:

Depth of Ground Water Table or bedrock depth determined through test pit =

Proposed minimum height of raised bed (where required):

Description of New or Existing Water Supply (check which applies):

- \Box Drilled well with 6m (19'-8") casing depth minimum.
- \Box Dug well
- □ Other:

There are two critical pieces of information that must be known in order to design a sewage system.

- 1. The amount of sewage entering the system that is generated from the building during a 24-hour period. This value is expressed as 'Q'.
- 2. The percolation rate. This value is expressed as 'T'.

The percolation rate means the average time in minutes that is required for water to drop one centimeter during a percolation test on-site or determined through soils analysis.

The sewage system daily design flows will be calculated using the charts provided in section two.

Note: A building inspector will not design a sewage system. The owner, authorized and qualified agent of the owner, qualified contractor/installer, qualified design consultant or professional engineer must provide the design of the sewage system.

Section Two: System Design and Worksheets

Sewage System Permit Summary / Overview											
Project Address:											
Applicable Law: (Documents provided with permit – check all applicable)											
□ Conservation Authority Approval.											
□ Source Water Protection.											
□ Permit Application and Schedule One (Designer) and Two (Installer) forms completed.											
□ Minor Variance Approval.											
□ Site Plan Approval.											
□ Grading Plans (for raised beds).											
□ Construction in Hazard Lands.											
Building Occupancy Type:											
□ Residential (Dwelling)											
Residential (Other) specify:											
□ Other Occupancy specify:											
Class of System:											
Class 2 Sewage System – Greywater System											
□ Class 3 Sewage System – Cesspool											
Class 4 Sewage System – Leaching Bed System											
Class 5 Sewage System – Holding Tank											
Sewage System Components:											
Septic Tank Capacity (L):											
Pump Capacity (L):											
□ Distribution Box											
□ Other (please specify):											
Advanced Treatment Unit Capacity (L):											
Manufacturer and Model:											
Method of Distribution Pipe Detection:											
□ Magnetic Means											
□ Tracer Wire (14 gauge TW solid copper light coloured plastic coated).											
□ Other Means (please specify):											

Worksheet A: Residential Dwelling – Daily Design Flow Calculations (Q)

A) Residenti	al Occupancy	(Q) Litres	Total
Number of	1 Bedroom	750	
Bedrooms	2 Bedrooms	1100	
	3 Bedrooms	1600	
	4 Bedrooms	2000	
	5 Bedrooms	2500	
		Subtotal (A)	

B) Plus Additional Flow for:

Note: Use the largest additional flow calculation to determine Daily Design Flow (Q). If none apply then Subtotal (B) = zero.

		Quantity	(Q) Litres	Total						
Either	Each bedroom over 5		500							
Or	Floor space for each 10m ² over 200m ² up to 400m ²		100							
	Floor space for each 10m ² over 400m ² up to 600m ²		75							
	Floor space for each 10m ² over 600m ²		50							
Or	Each fixture unit over 20 fixture units (Total of Worksheet $B - 20 = Quantity$)		50							
			Subtotal (B)							
Subtotal $A + B =$ Daily Design Flow (Q)										

Worksheet B: Residential Dwelling – Fixture Unit Count

Fixtures	Fixture	Quantity	Total
	Units		
Bath Group (Toilet w/flush tank, sink, tub or shower)	6.0		
Bathtub Only (with or without shower)	1.5		
Shower Unit/Stall	1.5		
Wash Basin / Lavatory (1.5" Dia. Trap)	1.5		
Water Closet (Toilet) Flush Tank	4.0		
Bidet	1.0		
Dishwasher (See notes)	1.0		
Floor Drain (3" Dia. Trap)	3.0		
Sink (single or double, or two singles with one trap)	1.5		
Domestic Washing Machine	1.5		
Combination Sink and Laundry Tray	1.5		
Garburator (See notes)			
Other:			
Total Nur			

Notes:

- 1. Bath group: A group of plumbing fixtures serving one room consisting of exactly one shower (single head) or bathtub, one lavatory (sink), and one water closet (toilet with flush tank). This would total seven (7) fixture units if added separately, but the Ontario Building Code provides a reduction for this grouping of plumbing fixtures.
- 2. Garburator: A domestic type of garbage disposal is permitted with no additional fixture unit load. A commercial type of garburator has a fixture load of 3.
- 3. Dishwasher: Only include dishwashers that are not connected to a domestic sink.
- 4. Refer to the Ontario Building Code Division B Table 7.4.9.3. for a complete listing of fixture types and fixture units.
- 5. Where laundry waste is not more than 20% of the total daily design flow, it may discharge to the sewage system. OBC 8.1.3.1.(2).
- 6. Sump pumps are not to be connected to the sewage system. Connection to a sewage system may lead to a hydraulic failure of the system.
- 7. Water softener and/or iron filter discharge may be directed to a sewage system provided the system has been designed to accept such discharge. Such discharge may lead to early failure of the system.

Worksheet C: Camp for the Housing of Workers

Camp for the Housing of Workers	Number of	(Q)	Total
	Employees	Litres	
Note: building size, number of bedrooms, and fixture		250	
counts are not required for a Camp for the Housing			
of Workers.			
	Daily Design F		

Worksheet D: Other Occupancy Daily Design Flow Calculation (Q)

To calculate the daily design flow for other occupancies, refer to the Ontario Building Code Division B, Part 8 Table 8.2.1.3.B.

Establishment	Load Variable Ex. Number of seats, per floor area, number of employees, etc.	Volume Litres	Total								
	Daily Design Flow (Q)										

Worksheet E: Septic Tank Size Note: The minimum septic tank size permitted by the Ontario Building Code is 3600 litres.

Occupancy Classification	Total Daily Design	Multiplied	Minimum Tank
	Flow (Q)	by Factor	Size (L)
Residential Occupancy		X2	
House, Apartment, Camp for the			
Housing of Workers.			
All other Occupancies		X3	

Worksheet F and G: Leaching Bed Calculations for Class 4 Sewage Systems.

Part 1: Complete All Parts										
Type of Leaching Bed (select one)										
□ Absorption Trench										
□ Filter Bed										
□ Shallow Buried Trench										
□ Advanced Treatment System										
Type A Dispersal Bed										
Type B Dispersal Bed										
Percolation rate of native/underlaying soil ("T" min/cm):										
Name of Licensed Soil Testing Agency:										
□ In-ground system										
□ Raised bed system										
Height raised above original grade (metres):										
Mantel (where applicable)										
□ Imported Fill										
□ Native Soil										
Total expanded area in (metres squared): Q/Loading Rate:										
(See OBC Div.B Part 8 Table 8.7.4.1.)										
Total expanded area configuration (length x width in metres):										

Worksheet G: Complete One of A, B, C, D, E, F to suit the sewage system proposed.

□ A. Absorption Trench Construction											
Total length of the distribution	Conventional $(QxT) \div 200 = m$										
pipe	(Septic tank only – no advanced treatment system)										
b.b.	Type 1 Leaching Chambers $(QxT) \div 200 = m$										
	Type 2 Leaching Chambers $(QxT) \div 300 =$ m										
	Configured as:runs ofm for a Totalm										
□ B. Filter Bed Constructio											
Effective Area	Effective area:(Q) \div (75, 50, or 100) =m										
If $Q \le 3000$ litres per day use											
$Q \div 75$	Configured as:m xm										
If $Q > 3000$ litres per day use Q											
$\div 50$	Number of beds:										
Level II-IV treatment units use											
$Q \div 100$	15 m Mantle Required										
Distribution Pipe											
-	Number of Runs:Spacing of runs:mContact Area: $(O) \times (T)$ π^2										
Contact Area = $(O = T) + 850$	Contact Area: $[_ (Q) x _ (T)] \div 850 = _ m^2$										
$(Q \times T) \div 850$											
Expanded Contact Area	ECA: m^2										
C. Shallow Buried Tren											
Percolation time (T) of soil in	Length of Total length of distribution pipe:										
minutes:	distribution (L)=(Q) \div (75, 50, 30) =m										
$1 < T \leq 20$	pipe (metres):										
$20 < T \le 50$	$Q \div 75$ metres										
50 < T < 125	$Q \div 50$ metres										
	$Q \div 30$ metres										
D. Advance Treatment	System										
Provide BMEC or CAN/BNQ ap	pproval and manufacturer's system design documents.										
E. Type A Dispersal Bec	1										
Stone layer:	Stone layer										
If $Q \le 3000 l/day$ use $Q \div 75$	= (Q) ÷ (75 or 50) = m^2										
If Q > $3000 l/day$ use Q ÷ 50											
Sand layer:	Sand layer										
$1 < T \le 15$ Use (Q x T) \div 850	$=$ [(Q) \div (T)] \div (850 or 400) $=$ m ²										
$T > 15$ Use (Q x T) \div 400											
□ F. Type B Dispersal Bed											
$Area = (Q \times T) \div 400$	Area = [(Q) x (T)] \div 400 = m ²										
Linear Loading Rate (LLR)	Pump chamber capacity =L										
T < 24 min. use 50 L/min.	Length $(Q \div LLR) =m$										
If $T \ge 24$ min. use 40 L/min.	Bed configuration =m xm m xm										
Distribution Pipe	Number of beds =										
	Configured as:runs ofm Total:m										

For the design of a Class 4 System, complete the following summary chart and the associated worksheets for the chosen type of Class 4 sewage system.


Class 4 System – complete summary selection for proposed system (A,B,C,D,E, or F)												
A: Absorption Trench	B: Filter Bed	C: Shallow Buried Trench										
□ In-Ground	□ In-Ground											
□ Raised	□ Raised											
□ Leaching Chambers Type 1	□ Effective Area:	□ Length of Chamber:										
□ Leaching Chambers Type 2												
□ Total Pipe Length:	□ Contact Area:											
□ Mantle Required	□ Leaching Chambers											
	Type 1											
Expanded Contact Area:	Expanded Contact Area: Leaching Chambers Type 2 											
	Type 2											
	□ Total Pipe Length:											
	□ 15 M Mantle Required											
	Expanded Contact Area											
	Required											
D: Advanced Treatment System	E: Type A Dispersal Bed:	F: Type B Dispersal Bed:										
(BMEC & CAN/BNQ):	□ In-Ground	□ In-Ground										
□ BMEC authorization		□ Raised										
provided	□ Length of Pipe:	□ Stone Layer Area:										
□ CAN/BNQ authorization												
provided	□ Mantle Area:	□ Linear Loading Rate										
□ Service agreement provided		40L/m										
□ Mantle Required/Area:	□ Stone Layer Area:	Linear Loading Rate										
		50L/m										
□ Stone Layer Area:	□ Sand Layer Area:											
□ Sand Layer Area:												
□ System Specifications												
Provided.												
□ Manufacturer's Installation												
Manual Provided.												

Worksheet H: Sewage System Site Plan

Please provide the following information on this worksheet:

- Location of the sewage system and components (tank, leaching bed, pump chamber, etc.)
- Location of all buildings, pools, waterbody, wells on the property and adjacent properties.
- Locate and show minimum clearances for treatment units and distribution piping. Refer to Ontario Building Code, Division B. Table 8.2.1.6.A, 8.2.1.6.B, and 8.2.1.6.C

□ Location of property lines, easements, and utility corridors.

Worksheet I: Cross Sectional Drawings

Cros	Cross sectional drawings are required for all sewage system designs.																								
	55																								
	Label each septic system component																								

Acknowledgement of Above Ground Electrical Conductors

Sentence 3.1.19.1. of the Ontario Building Code indicates that a building shall not be located beneath existing above ground electrical conductors and dictates the minimum horizontal clearances measured from the maximum conductor swing to a building as such:

- a) Be not less than 1m for electrical conductors carrying voltages 750V or less, except where necessary to connect the electrical wiring of the building;
- b) Be not less than 3m for electrical conductors carrying voltages greater than 750V but not exceeding 46kV;
- c) Be not less than 3.7m for electrical conductors carrying voltages greater than 46kV but not exceeding 69kV, or
- d) Conform to the requirements of CAN/CSA-C22.3 No.1, "Overhead Systems" for electrical conductors carrying voltages greater than 69kV.

The Ontario Building Code and Building Code Act defines a sewage system as a "Building". The following acknowledgement is to ensure that the location of the sewage system will meet OBC requirements for clearances from above ground electrical conductors.